Basic terminology and formulas for complex variables

modulus: the length r of z, denoted |z|,

argument: angle θ of z (to real axis), denoted arg(z),

real part of z: x coordinate of z, Re(z),

imaginary part of z: y coordinate, Im(z),

complex conjugate of z: reflection of z in the real axis, in other words, negate the imaginary part, denoted \bar{z} or z^* .

Here are some useful things you should convince yourself of, either algebraically or geometrically or both. Drawing little vector pictures helps. For these you can generally assume r = |z|, and $\theta = \arg z$.

- 1. $\operatorname{Re}(z) = \frac{1}{2}[z + \bar{z}].$
- 2. $\operatorname{Im}(z) = \frac{1}{2i}[z \bar{z}].$
- 3. $|z| = \sqrt{x^2 + y^2}$.
- 4. $\tan(\arg z) = \frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}$.
- 5. $z\bar{z} = |z|^2$.
- 6. $z = re^{i\theta} = r(\cos\theta + i\sin\theta)$, where $\theta = \arg z$.
- 7. $\frac{1}{x} = \frac{1}{x}e^{-i\theta}$.
- 8. $\frac{1}{z} = \frac{1}{x+iy} = \frac{x}{x^2+y^2} i\frac{y}{x^2+y^2}$.
- 9. $\frac{1}{z} = \frac{\bar{z}}{z\bar{z}}$ (rewrite of above).
- 10. $\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 \theta_2)}$.
- 11. $\overline{z_1 + z_2} = \bar{z_1} + \bar{z_2}$.
- 12. $\overline{z_1 z_2} = (\bar{z_1})(\bar{z_2}).$
- 13. $\overline{z_1/z_2} = \bar{z_1}/\bar{z_2}$.
- 14. The generalized triangle inequality:

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|.$$