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To understand a correlation interferometer it is best to consider a simple one-dimensional case: that of
a two-element multiplying interferometer. The following treatment is partly based on one by P. Fisher,
similar examples can be found in any radio astronomy text.

Two antennas are separated by an east-west baseline of length B. An astronomical point source is in
the eastern sky at an angular elevation of θ above the horizon (see figure 1)

Since the source is practically at an infinite distance, the paths (and wavefronts) from the source to the
two antennas are parallel. As figure 1 shows, after passing antenna 1 the wavefront must pass through
an additional distance d to reach antenna 2. The signal at antenna 1 will produce a voltage which
can be represented as E cos 2πft where E is the amplitude of the electric field, f the frequency, and t
the time. The same signal will travel to antenna 2 through the extra distance d, so the wavefronts will
reach antenna 2 at a time d/c later than at antenna 1. The voltage at antenna 2 can be written as:

E2 = E cos[2πf(t− d/c)] (1)

or
E2 = E cos(2πft− φ) (2)

Figure 1: Geometry for interferometer observing a point source.

1



where
φ = 2πfd/c (3)

is the phase difference between the two signals. Since

f = c/λ (4)

where λ is the wavelength, we may write the phase difference φ as

φ = 2πd/λ. (5)

The signals from the two antennas are multiplied together in a correlator:

E1E2 = E cos(2πft− φ) · E cos(2πft) = (E2/2)[cos(4πft− φ) + cosφ]. (6)

The high frequency term is filtered out and we are left with:

R = (E2/2) cosφ = I cosφ. (7)

Both the magnitude I, and the phase φ, of R are measured. The magnitude depends on the brightness,
or intensity, of the source. The phase contains the positional information. The length d in fig. 1 can be
written B cos θ. Therefore the phase is:

φ =
2π

λ
B cos θ. (8)

Now we have a method of determining θ, the position of the point source, from the known quantities φ
and B.

Note that as the earth rotates, θ will change, and if B/λ is large (as it usually is), θ will be changing
quite rapidly. Since this is inconvenient for electronic sampling, a variable delay is inserted between
antenna 1 (nearest to the source) and the correlator. This delay is varied at the sidereal rate of the
source position to bring the phase at the center of the field of view to zero. This is known as “fringe
stopping” and the point of zero phase is known as the phase tracking center. When this is done, the
response of the correlator to a source at the phase tracking center is simple I, the source intensity.

A useful analogy is now evident. Fringe stopping has the effect of setting θ to π/2, and the baseline
length to d = B sin θ. The interferometer thus acts as if the source were at the zenith and the separation
were d. Note the similarity to Young’s double slit experiment.

Now we consider extended sources and imaging. A complex source can be considered as a collection
of point sources of varying position and intensity. We pick some source at or near the source of interest
and use it as the phase tracking center. If a point on the source is δθ away from the phase center, then
the new path difference is (see fig 2):

d′ = B cos(θ + δθ). (9)

This means that the phase measured will be

φ =
2π

λ
B cos(θ + δθ). (10)

Recall from calculus that f(x+ δx) = f(x) + δxf ′(x), so

φ =
2π

λ
B(cos θ + δθ sin θ). (11)

If we now apply the proper delay to set the phase tracking center, effectively setting θ = π/2, then

φ ≈
(

2π

λ

)
Bδθ, (12)
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Figure 2: Geometry for an extended source.

which is the visibility phase. The response of the correlator is then

R = I cos

[(
2π

λ

)
Bδθ

]
. (13)

We now have a problem. Note that we have no way of telling whether δθ, and thus φ, is positive or
negative, since the cosine is an even function. Look at equation 6. We can shift the phase of E2 by π/2
using a quarter cycle delay or a Hilbert Transform filter. This converts the cosine into a sine, and we have

E1E2 = E cos(2πft)E sin(2πft) (14)

= I[sin(4πft+ φ) + sin(φ)]. (15)

This gives us the sign of φ. Again filtering out the high frequency term, wer are left with I sinφ. Now
we can define

R′ = I[cosφ+ i sinφ] = Ieiφ. (16)

We define R′ as a complex number since it is a compact and mathematically convenient representation
for a quantity which possesses an amplitude (intensity) and a phase, both of which can be manipulated
and measured electronically. R′ is known as the complex correlation, or visibility.

This is the key to interferometry. The response of the (now complex) correlator to a complicated
pattern of point sources will be the superposition of many sine and cosine functions of varying fre-
quency,1 and amplitude, which can be represented by complex numbers. The fourier transform of this

1N. B. The frequency of the correlator output is determined by the phase, which is dependent on the position of the
source relative to the phase tracking center. See eq. 13.
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superposition will yield a “spectrum” of intensities at various complex phases, and by equations 13—16
complex phase corresponds directly to position. Thus we can produce an image (one-dimensional in this
case) of part of the sky.

Note than φ is limited to ±π/2 by sign ambiguities with the trig functions. At any particular receiver
frequency f we are thus limited in the range of angular separations we can sample for a particular base-
line. This is why radio interferometers usually consist of many antennas, giving many baseline pairs.
In addition, an array on the earth can take advantage of the earth’s rotation to increase the range of
baselines it can sample. Long observations allow the projected baseline lengths to change significantly
with the earth’s rotation.

The above explanation can easily be extended to two-dimensional arrays, allowing us to make ac-
tual images of the radio sky. We must then consider the baselines and positions as vectors, and use
two-dimensional fourier transforms.
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