Modern Physics Ch. 11: Problems 1,2,5

D. Craig, WTAMU

January 30, 2008

1. Potassium Iodide a) This is just subtraction, following the description of ionic bond energies in the text. The ionization energy of K is $E_{i K}=$ 4.34 eV and the electron affinity of I is $E_{a I}=3.06 \mathrm{eV}$ and so the activation energy is

$$
E_{a}=E_{i K}-E_{a I}=1.28 \mathrm{eV}
$$

b) We need to solve

$$
U(r)=4 \mathcal{E}\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]+E_{a}
$$

for the constants \mathcal{E}, σ given at equilibrium $r_{0}=0.305 \mathrm{~nm}$ and $U\left(r_{0}\right)=$ -3.37 eV . We also know that $\frac{d U}{d r}=0$ at $r=r_{0}$. So we take the derivative

$$
\frac{d U}{d r}=\frac{d}{d r}\left(4 \mathcal{E}\left(\sigma^{12} r^{-12}-\sigma^{6} r^{-6}\right)+E_{a}\right)
$$

after careful algebra:

$$
=24 \mathcal{E} \sigma^{6} r^{-7}\left(-2 \sigma^{6} r^{-6}+1\right)
$$

At $r=r_{0}$ this will be zero, so the quantity in parentheses must then be zero (everything else is nonzero constants).

$$
1-2 \sigma^{6} r^{-6}=0
$$

and solving for σ :

$$
\sigma=\left(\frac{1}{2}\right)^{1 / 6} r_{0}=0.272 \mathrm{~nm}
$$

Then you plug into $U(r)$ all the known values at $r=r_{0}$ and solve for $\mathcal{E}=4.65 \mathrm{eV}$.
c) When I was preparing for class, I misread the problem. I thought it wanted the energy to disrupt the bond (that's easy, see p. 374). But we want the force.

This must be the maximum radial attractive force between the atoms. Recall that the force is the negative of the potential gradient:

$$
F=-\frac{d U}{d r} .
$$

We have this expression in part b) above (without the minus sign, which won't matter anyway, it only sets the direction). $-F=\frac{d U}{d r}$ So we have to take another derivative to find r_{F}, the point where the slope of the potential is greatest (outside r_{0}).

$$
-\frac{d F}{d r}=24 \mathcal{E} \sigma^{6} r^{-8}\left(-7+26 \sigma^{6} r^{-6}\right)
$$

at $r=r_{F}$ this will be zero, so this means again the part in parentheses is zero, so

$$
r_{F}=\left(26 \sigma^{6} / 7\right)^{1 / 6}=0.3385 \mathrm{~nm} .
$$

Then plug r_{F} into $-F=\frac{d U}{d r}$ and get the magnitude of $F=6.57 \times 10^{-9}$ newtons. Whew! That was a job for Frink: I put in the values in eV and nm and got out an answer in N .
Here is a Frink transcript (s is σ, E is \mathcal{E}, r is r_{F}):

```
setPrecision[4]
r = ((26 * s^6)/7)^(1/6)
3.384864640124462e-10 m (length)
r -> "nm"
0.3385 nm
E = 4.65 eV
7.449e-19 m^2 s^-2 kg (energy)
F = 24*E*(s^6)*r^(-7)*( 1 - 2*s^6*r^(-6) )
6.570e-9 m s^-2 kg (force)
F -> "nN"
6.57 nN
```

2. NO reduced mass. We are told the frequency for the $\nu=0$ to $\nu=1$ transition is $5.63 \times 10^{13} \mathrm{~Hz}$. The effective spring constant is $K=1530 \mathrm{~N} / \mathrm{m}$ from the table. Calculate the reduced mass μ using both the frequency and the reduced mass formula.

$$
\mu=\frac{K}{\omega^{2}}=1.223 \times 10^{-26} \mathrm{~kg}=7.363 \mathrm{amu}
$$

The reduced mass can also be gotten from the masses on the periodic table:

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=7.468 \mathrm{amu}
$$

just a few percent different.

