Question #47. Is there an “‘iso-"> name for a AU=0
process?

Thermodynamics uses the following terms to indicate cer-
tain conditions for processes:

isobaric AP=0
isochoric AV=0
isenthalpic AH=0
isentropic AS=0

Is there an equivalent ‘‘iso-’’ word for a process in which
AU=07? (and, for that matter, AA=0 and AG=0?)

David W. Ball
Department of Chemistry
Cleveland State University
Cleveland, Ohio 44115

Answer to Question #19 [‘‘Noether’s theorem and
discrete symmetries,”’ Dwight E. Neuenschwander, Am.
J. Phys. 63(6), 489 (1995)]

The answer to this question is negative: As far as today is
known, there is not a result of the generality and scope of
Noether’s Theorem for discrete symmetries. The number and
importance of consequences holding from invariance of a
system under a discrete group of transformations are, in fact,
very limited when compared with its continuous counterpart.

One of the few exceptions to the previous statement is,
without doubt, Bloch’s theorem,! which deduces the func-
tional dependence of the eigenstates and eigenvalues of a
Hamiltonian in a periodic potential, like that of a solid. The
invariance of Schrodinger’s equation under an infinite but
discrete group of translations (those corresponding to the un-
derlying Bravais lattice) leads to the fundamental concept of
band structure, which has been of great importance, both
theoretical and technological. However, the eigenstates of
the Hamiltonian are not, in general, simultaneous eigenstates
of the momentum operator unless the size of the periodicity
tends toward zero: In this case we have a constant potential,
namely, a free particle. This is analogous to momentum con-
servation in classical mechanics:? It can be seen as the result
of a perfect translational symmetry, that is to say, the invari-
ance under a (continuous) group of transformations, that of
translations in R°.

I think that this shows how the continuity of the group is
essential for the existence of an associated conservation law
to hold. Otherwise, the invariance under a discrete group of
transformations does not necessarily imply such a law, as the
previous example illustrates.
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ISee, for example, N. W. Ashcroft and N. D. Mermin, Solid State Physics
(Saunders, Philadelphia, 1976), pp. 133-141.

2. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, Oxford, 1976),
3rd ed., pp. 15 and 16.
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Answer to Question #19 [‘‘Noether’s theorem and
discrete symmetries,”” Dwight E. Neuenschwander, Am.
J. Phys. 63(6), 489 (1995)]

The question is whether there is an analog to Noether’s
theorem, relating symmetries to conservation laws, for the
case of discrete symmetries. There is, in fact, a most elegant
generalization, in the context of quantum mechanics, which
is applicable to all symmetries, discrete and continuous, that
are associated with invariance under unitary transformations.
The only exceptions, then, are symmetries that include time
reversal.

Every Hermitian linear operator in quantum theory (leav-
ing aside mathematical subtleties) plays a dual role: It repre-
sents a physical observable, and it serves as the generator of
a set of transformations. When two operators commute, the
physical meaning takes different forms depending on the role
assigned to each. In particular, if A and B are two observ-
ables, and A and B are the corresponding operators, then A
and B commute if and only if the observable A is invariant
under the transformations generated by B. Reversing the
roles of A and B, and combining, you get the following very
symmetrical rule:

The observable A is invariant under the transformations gen-
erated by B if and only if the observable B is invariant under
the transformations generated by A.

You get Noether’s theorem by letting B, say, be the
Hamiltonian operator H. The transformations generated by H
are simply time displacements, and invariance under time
displacements corresponds to a conservation law. The invari-
ance of H under transformations generated by A, on the other
hand, corresponds to a symmetry of nature, i.e., an invari-
ance of the equations of motion generated by the Hamil-
tonian. The specific form of Noether’s theorem is thus:

The observable A is conserved if and only if the equations of
motion are invariant under the transformations generated by
the corresponding operator A.

In the case of a continuous symmetry, the Hermitian op-
erator A is refated (by an exponential function) to the unitary
transformations in question. In the case of a discrete symme-
try the operator A has to be unitary, and the observable A is
a unimodular, rather than real, variable. The most common
discrete symmetries, though, are simple inversions like parity
and charge conjugation, and A itself is then both Hermitian
and unitary.

In the context of classical Hamiltonian mechanics the
identical argument can be carried through, for continuous
symmetries only, by replacing commutators by Poisson
brackets. This is because infinitesimal canonical transforma-
tions can be generated by physical observables, while dis-
crete finite transformations cannot.

Robert Mills
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Answer to Question #21 [¢‘Snell’s law in quantum
mechanics,”’ Steve Blau and Brad Halfpap, Am. J. Phys.
63(7), 583 (1995)]
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The question of how to interpret Snell’s law and the index
of refraction from the point of view of photons and quantum
mechanics can usefully be recast as a question of how to
interpret these concepts from a microscopic point of view,
whether quantum-mechanical or (semi-)classical. Feynman
has an excellent microscopic analysis of the index of refrac-
tion in his Chapter 31 on ‘“The Origin of the Refractive
Index.”’! He points out that, ‘‘so far as problems involving
light are concerned, the electrons (in atoms) behave as
though they were held by springs’” (p. 31-4). One can
glimpse how this is possible by approximating the electron
cloud in hydrogen with a uniform-density sphere of radius R.
If the proton is displaced a distance s from the center of this
sphere, there is a restoring force on the proton due to the
electric field contributed by that portion of the sphere that is
inside the radius s:
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This is also the force exerted on the electron cloud by the
proton, and it is proportional to s, just like a spring force. Of
course quantum mechanics is required to predict the actual
electron charge distribution, but many of the electric conse-
quences of that charge distribution can be analyzed classi-
cally.

In a microscopic but otherwise classical analysis, the elec-
tric field in electromagnetic radiation accelerates electrons
held by springs in the atoms of a piece of glass, and these
accelerated electrons re-radiate in all directions. The ob-
served light is the superposition of the electric (and mag-
netic) fields of the incoming light and the re-radiation. Full
quantitative analysis from a microscopic point of view re-
quires a kind of self-consistent calculation, because the re-
radiation from accelerated electrons contributes to the net
electric field driving the electrons. Feynman deals with the
low-density limit in which re-radiation of re-radiation is neg-
ligible, but this is adequate to understand the essential as-
pects of the phenomena. In the backward direction we nor-
mally call the re-radiation ‘‘reflection,”” but this labeling
obscures the fact that this is rnew light radiated by all the
atoms in the glass, not old light that has magically ‘‘bounced
off’’ the front surface due to some unknown mechanism. The
microscopic analysis of ‘‘reflection’ is exactly the same as
the analysis of x-ray diffraction, but because the interatomic
spacing is small compared to the wavelength of visible light,
the ‘‘reflected’’ light has just one, zeroth-order interference
maximum in the ‘‘reflection’’ direction (#=0 in the Bragg
“‘reflection’’ condition).

In the forward direction we speak of ‘‘refraction,”” and we
say that ‘‘the speed of light is slower in the glass,”” but, in
fact, the speed of light does not change in the material.
Rather, Feynman shows how the superposition of the incom-
ing light, traveling at speed c, and the light re-radiated by the
atomic electrons, traveling at speed c, shifts the phase of the
radiation in the air downstream of the glass in the same way
that would occur if the light were to go slower than ¢ in the
glass, with a shorter wavelength and an index of refraction
greater than 1 for frequencies below the natural frequency of
the oscillators (otherwise the phase shift corresponds to a
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speed greater than ¢ in the material, with index of refraction
less than 1). At a fundamental level this phase velocity,
greater or less than ¢, is of no particular physical signifi-
cance, because it only applies to the overly simplified case of
single-frequency sinusoidal radiation permeating all space,
and such radiation cannot carry a meaningful signal.

To see what happens to a meaningful signal, consider in-
coming radiation in the form of a sine wave that starts sud-
denly. Detecting the leading edge of this sine wave provides
real information. Suppose the electric field in the first half
cycle is in the +y direction. An electron is initially driven
downward by the incoming electric field, and the accelerated
electron radiates in (nearly) all directions. In the forward
direction the re-radiated field at far distances is proportional
to —ga,=+ea, (with a, negative), so that the contribution
to the net downstream field is in the —y direction. Therefore,
at a downstream observation point, the ner field during the
beginning of the cycle is reduced slightly from what it would
be in the absence of the charge on a spring, and the rise time
is slower.

The details of the net wave shape can be studied by nu-
merical integration of the motion of the electron on the
spring under the influence of the sudden-onset incoming sine
wave, to obtain the acceleration of the electron as a function
of time to use in evaluating the charge’s —qa, contribution
to the net field. One finds by numerical computation that the
effect of a single oscillator is to make the initial maximum of
the net field at the observation point occur slightly late, as
though the speed of light were less than c.

However, the apparent ‘‘slower speed’’ is the result of the
superposition of two radiative electric ficlds, the incoming
radiation and the re-radiation, both of which travel at the
normal speed of light c. If taken too seriously, it is a viola-
tion of the superposition principle to say that the speed of
light is affected by the presence of matter. The incoming
radiation was produced by some accelerated charges, and the
field that those charges produced is unaffected by the pres-
ence of other charges anywhere in the universe, and this field
propagates at speed c. In particular, incoming radiation
passes through glass unchanged, but downstream we observe
the superposition of this unchanged radiation with re-
radiation from the accelerated electrons in the glass. The
leading edge of radiation may travel at a speed smaller than
¢, but only through the superposition of the contributions of
accelerated charges that make radiative fields that propagate
at speed c.

Another relevant computation is to re-do numerically Fey-
nman’s analytical calculation for a very thin glass plate, but
with a sudden-onset sine wave instead of a continuous sine
wave. For a driving frequency below the natural frequency of
the oscillators, one finds a slight delay in the first maximum,
and one also finds in agreement with Feynman’s calculation
a phase delay after the steady state is attained. For a driving
frequency above the natural frequency of the oscillators,
there is hardly any delay in the first maximum, and there is a
phase advance after the steady state is attained, as discussed
by Feynman in Section 31-4 on ‘‘Dispersion.”’

It is enormously convenient to describe refraction by say-
ing ““the speed of visible light is smaller in glass.”’ It would
be extremely difficult from the microscopic viewpoint to cal-
culate the index of refraction for a dense material such as
glass, due to having to take into account re-radiation of re-
radiation in a self-consistent way, using the correct form of
the retarded fields of nearby accelerated electrons (Feyn-
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man’s calculation not only neglects re-radiation of re-
radiation but requires only the far-field approximation). The
index of refraction lumps all of this complexity into one
convenient number, and one convenient metaphor. The
mathematical complexity of the microscopic analysis is pro-
hibitive for most quantitative work, but it complements the
macroscopic picture by providing a deep sense of mecha-
nism and by permitting a unified microscopic analysis of
reflection, refraction, x-ray diffraction, and even thin-film in-
terference. This is analogous to the insight that kinetic theory
adds to thermodynamics, or that circuit analysis in terms of
surface charge® adds to the Kirchhoff loop and node rules.

The original question asked about Snell’s law from the
point of view of photons. The main issue is not really pho-
tons, but microscopic versus macroscopic analyses. The pas-
sage to quantum mechanics introduces still more mathemati-
cal complexity but does not change the main point. The
reflected and refracted light consists of the (quantum) inter-
ference of incoming photons with photons re-emitted by at-
oms in the glass. The fundamental speed of light is unaf-
fected.

Bruce A. Sherwood
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Answer to Question #21 [*“Snell’s law in quantum
mechanics,”’ Steve Blau and Brad Halfpap, Am. J. Phys.
63 (7), 583 (1995)]

Concerning the interpretation of reflection and refraction
in terms of photons,' it should first be noted that the notion
of “billiard ball’> photons very often leads to confusion,’
especially if it is used to describe the propagation and inter-
ference of light independently of and prior to its detection.
Interference effects, for instance, really involve the interfer-
ence of quantum-mechanical probability amplitudes (whose
squared moduli are the probabilities) rather than photons
per se.

In the quantum-mechanical description of a plane wave
incident on a dielectric medium, each photon has a probabil-
ity amplitude to be scattered by any one atom. The complete
probability amplitude for a photon to be found at any point
inside or outside the medium is the amplitude for it to get
there without any scattering, plus the sum over all the pos-
sible paths by which it can get there via single- and multiple-
atom scattering. The result of this superposition of all pos-
sible probability amplitudes is an amplitude that is nonzero
both inside and outside the medium. The part outside the
medium is nonvanishing only in directions given by the law
of reflection, while the part inside is nonvanishing only in
directions given by Snell’s law; the latter part propagates at
the phase velocity of light in the medium. The probabilities
for reflection and refraction are exactly the reflection and
transmission factors given by the Fresnel formulas for the
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field intensity. This result has been worked out explicitly for
the case of normal incidence of a single photon.3

Actually the situation can be described very similarly in
classical electromagnetic theory. According to the superpo-
sition principle, the field at any point is the sum of the inci-
dent field plus the fields produced by scattering from the
dipoles of the medium, each field propagating at the vacuum
velocity of light. The results of this superposition are the
usual reflected and refracted waves whose directions are
given by the laws of reflection and Snell. This is the essence
of the Ewald—Oseen extinction theorem of classical optics.*

In other words, the probability amplitude for finding a
photon at any point in this example follows exactly the Max-
well equations; for most purposes we can, in fact, regard the
vector potential as in effect a wave function for a photon.’
The important point is that the photon wave function here
represents the probability of finding a single photon. When
the number of photons is large, we can regard this wave
function as a directly measurable, classical wave, and explain
the classical Snell’s law as a consequence of interfering
probability amplitudes. Indeed ‘the first observations were
on situations with many photons in the same state, and so we
were able to discover the correct equation for a single photon
by observing directly with our hands on a microscopic level
the nature of wave function.’”
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Answer to Question #30 [‘‘How are positrons
moderated?,”’ Thomas D. Rossing, Am. J. Phys. 63(12),
1065 (1995)]

The current technology’ for producing low-energy posi-
tron beams uses a high-purity, thin crystalline metallic foil
(typically on the order of microns thick) which is illuminated
on one side by a radioactive positron source, typically
22Na. The emission of positrons from the far side of the foil
is related to several fortunate characteristics regarding the
behavior of positrons in metals. First, positrons are able to
thermalize in a metal in about 10 ps, which is an order of
magnitude smaller than the mean lifetime of positrons in the
metal. Second, on the order of 1% of the positrons incident
on the source side of the metal foil will stop within a dis-
tance of the far side comparable to the diffusion length of a
thermal positron during its mean lifetime. Thus a significant
number of positrons can actually make it to the surface on
the other side of the foil. It is here that the energetics of the
metal surface play an important role. Positrons at the surface
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