Beta decay and neutrinos

D. Craig, WTAMU

2008-02-29

Beta decay is due to the weak nuclear interaction, with the following properties:

- 1. Affects both nucleons and electrons.
- 2. Affects both charged and uncharged quanta.
- 3. Has very short range $\leq 10^{-3}$ fm.
- 4. Typically transforms quanta from one type to another.
- 5. Typically involves neutrinos or antineutrinos.

The daughter nucleus has the same number of nucleons, the mass number changes by one:

$$\begin{array}{c} {}^{A}_{Z} X \rightarrow {}^{A}_{Z+1} Y + e^{-} \\ {}^{A}_{Z} X \rightarrow {}^{A}_{Z-1} Y + e^{+} \end{array}$$

Nucleon number and total charge are conserved by this description, but we'll see that E, \vec{p} are *not*, so something else is happening.

$${}^{14}_{6} \text{C} \rightarrow {}^{14}_{7} \text{N} + e^{-} \\ {}^{12}_{7} \text{N} \rightarrow {}^{12}_{6} \text{C} + e^{+}$$

In β decay a neutron changes to a proton, or vice-versa. The electron or positron is *created* out of the rest energy of the decaying nucleus.

Energetics of β decay.

Imagine that only an electron is emitted in the decay. We'll take the case of a decaying isolated neutron, $n \rightarrow p + e^{-}$. Then the energy release would be

$$Q = (m_n - m_p - m_e)c^2$$

all these are definite values, Q is fixed, so we would expect the electron to emerge with only *one* value of E, using conservation of energy and momentum.

Experimentally, this is **not** what happens.

Neutrinos

What is found is that there is a *continuous distribution* of energies up to the "two-particle" decay energy K_{max} , see fig. 13.19

Spin and momentum would also not be conserved, unless there is another particle involved.

Pauli proposed this and Fermi named it—the neutrino, $\boldsymbol{\nu}.$ It has

- zero charge,
- a very small rest mass, $0 < m_{\nu} < 2.8 \text{ eV}/c^2$,
- spin $\frac{1}{2}$,
- a very weak interaction with matter.

β decay in full

$${}^{A}_{Z} X \rightarrow {}^{A}_{Z+1} Y + e^{-} + \overline{\nu}$$
 (electron decay)
 ${}^{A}_{Z} X \rightarrow {}^{A}_{Z-1} Y + e^{+} + \nu$ (positron decay)

The antineutrino $\bar{\nu}$ is produced e^- beta decay.

Electron capture competes with e^+ decay. The nucleus captures an orbital electron and emits a ν , converting a $p \rightarrow n$:

$$^{A}_{Z} X + e^{-} \rightarrow \ ^{A}_{Z-1} X + \nu$$

This is usually an inner K-shell electron, so it is also called **K capture**.

Energy release

The Q-values are $Q=(M_X-M_Y)c^2\ e^-\ \text{and electron capture,}$ (electron mass is in atomic $M_Y)$ and

$$\mathrm{Q} = (\mathrm{M}_{\mathrm{X}} - \mathrm{M}_{\mathrm{Y}} - 2\mathrm{m}_{\mathrm{e}})\mathrm{c}^{2}$$
 for e^{+} decay.

Nuclear stability

Alpha and beta decay are the main mediators of the stability of an isotope. Typically:

- 1. neutron-poor isotopes undergo electron capture or $e^+ \beta$ decay,
- 2. neutron-rich isotopes undergo $e^- \beta$ decay,
- 3. massive nuclei (Z > 82) undergo α decay.

See the graphic at

http://www.meta-synthesis.com/webbook/33_segre/segre2.html#2