Chapter 11: Molecular rotation and vibration

D. Craig, WTAMU

2008-01-18

Hydrogen bonding (finishing the survey)

Molecules can be bound by a hydrogen atom that is part of one of the molecules-the proton make a positive charge center on the molecule that can be attracted to areas of enhanced negative charge on another polar molecule.

H bonding is relatively weak, but extremely important in biological systems.

Rotation and Vibration

In gas phase, a molecule has
electronic energy due to interaction between electrons and nucleus;
translation energy due to motion of CM through space;
rotational energy due to motion about the CM; and
vibrational energy due to vibration of constituent atoms.

$$
\mathrm{E}=\mathrm{E}_{\mathrm{el}}+\mathrm{E}_{\text {trans }}+\mathrm{E}_{\text {rot }}+\mathrm{E}_{\mathrm{vib}}
$$

Rotation Consider a diatomic ("dumbell") atom. Has 2 rotational degrees of freedom. See figure 11.6.

The angular momentum is

$$
L=\left(m_{1} r_{1}^{2}+m_{2} r_{2}^{2}\right) \omega=I \omega
$$

and the rotation energy is

$$
E_{\text {rot }}=\frac{1}{2} \mathrm{I} \omega^{2}
$$

eliminate ω

$$
\mathrm{E}_{\text {rot }}=\frac{\mathrm{L}^{2}}{2 \mathrm{I}} .
$$

Note the similarity to translational KE of a particle:

$$
\mathrm{T}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}} .
$$

Reduced mass

I depends on the rotation axis. If we use the CM as the axis, then

$$
I_{C M}=\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right) R_{0}^{2} \equiv \mu R_{0}^{2}
$$

where R_{0} is the interatomic separation and μ is the reduced mass:

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

This same form of reduced mass is also used in gravitational orbit problems in celestial mechanics.

Quantize angular momentum

L is dynamical, so L^{2} becomes quantized. The rule is

$$
\mathrm{L}^{2}=\ell(\ell+1) \hbar^{2} \ell=0,1,2 \ldots
$$

This restricts rotational energy:

$$
\mathrm{E}_{\text {rot }}=\frac{\hbar^{2}}{2 \mathrm{I}_{\mathrm{CM}}} \ell(\ell+1)
$$

Putting in the integers you get

$$
\frac{\hbar^{2}}{2 \mathrm{I}_{\mathrm{CM}}} \cdot\{0,2,6,12,20,30,42, \ldots\}
$$

as rotational energy levels.

The spacing between levels is

$$
\Delta \mathrm{E}_{\mathrm{rot}}=\frac{\hbar^{2}}{\mathrm{I}_{\mathrm{CM}}} \ell
$$

where ℓ is the highest of the adjacent levels.

The same procedure can be applied to more complex molecules by using an appropriate $I_{C M}$.

It is interesting to note that microwave ovens act by exciting the rotational levels of water molecules, and then this energy is transferred to vibrational modes as thermal energy.

Molecular Vibration

Consider a molecule as a pair of masses joined by an effective spring of constant K. If ξ_{1}, ξ_{2} are displacements from equilibrium of the masses, the elastic energy is

$$
\mathrm{U}=\frac{1}{2} \mathrm{~K}\left(\xi_{1}-\xi_{2}\right)^{2} .
$$

Note that $\xi_{1}-\xi_{2}$ will be the total stretch. If we go to CM coordinates and use the reduced mass μ, then $p_{2}=-p_{1}$ and

$$
K E_{\mathrm{vib}}=\frac{\mathrm{p}_{1}^{2}}{2 \mu} .
$$

This all describes a 1-D oscillator with vibration coordinate $\xi^{=}=\xi_{1}-\xi_{2}$.

This gives us the Schrödinger equation

$$
-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d \xi^{2}} \psi+\frac{1}{2} K \xi^{2} \psi(\xi)=E_{v i b} \psi(\xi)
$$

which is the one for a 1-d quantum oscillator. Using the known solution, we get

$$
E_{v i b}=\left(v+\frac{1}{2}\right) \hbar \omega ; \quad v=0,1,2, \ldots
$$

This gives a set of energy levels

$$
\left\{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \ldots\right\} \hbar \omega .
$$

Also

$$
\mathrm{K}=\mu \omega^{2}
$$

if we need to find the effective force constant.

More realistic models

More complete treatment of molecular rotations and vibrations would involve

- 3-D quantum mechanics of multiparticle systems. Calculations difficult so approxations necessary.
- More realistic (anharmonic) potential functions, such as the Morse oscillator (see p. 384).

Problems

For next week (by Friday) do 11.1, 11.2 and 11.5. We will discuss these and some of the in-text examples in class next week.

Also take a look at the file in the course area whose filenames start with $1985 \times x W e i s s k o p f$, which give interesting order-of-magnitude essays on these topics.

