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Hydrogen bonding (finishing the survey)

Molecules can be bound by a hydrogen atom
that is part of one of the molecules—the pro-
ton make a positive charge center on the mole-
cule that can be attracted to areas of enhanced
negative charge on another polar molecule.

H bonding is relatively weak, but extremely im-
portant in biological systems.



Rotation and Vibration

In gas phase, a molecule has

electronic energy due to interaction between
electrons and nucleus;

translation energy due to motion of CM through
space;

rotational energy due to motion about the
CM: and

vibrational energy due to vibration of con-
stituent atoms.

E = F—eI + 1:—trans -+ Erot + Evib



Rotation Consider a diatomic ( “dumbell”) atom.
Has 2 rotational degrees of freedom. See fig-
ure 11.6.

The angular momentum is
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and the rotation energy is
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Note the similarity to translational KE of a par-
ticle:



Reduced mass

I depends on the rotation axis. If we use the
CM as the axis, then
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where Ry is the interatomic separation and p is
the reduced mass:
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This same form of reduced mass is also used
in gravitational orbit problems in celestial me-
chanics.



Quantize angular momentum

L is dynamical, so [2 becomes quantized. The
rule is
L2=¢e+1R: ¢=0,1,2...
This restricts rotational energy:
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Putting in the integers you get
le
—-{0,2,6,12,20,30,42, ...}
as rotational energy levels.
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T he spacing between levels is

2
Abrot = IC—M ¢

where { is the highest of the adjacent levels.

The same procedure can be applied to more
complex molecules by using an appropriate Ic-p.

It is interesting to note that microwave ovens
act by exciting the rotational levels of water
molecules, and then this energy is transferred
to vibrational modes as thermal energy.



Molecular Vibration

Consider a molecule as a pair of masses joined
by an effective spring of constant K. If &;,&)
are displacements from equilibrium of the masses,
the elastic energy is

1
U= ZK(& — &)

Note that & — &, will be the total stretch. If
we go to CM coordinates and use the reduced
mass u, then p, = —p7 and

P
21
This all describes a 1-D oscillator with vibra-
tion coordinate § = &1 — &).

T
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This gives us the Schrodinger equation
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which is the one for a 1-d quantum oscillator.
Using the known solution, we get
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This gives a set of energy levels
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if we need to find the effective force constant.



More realistic modaels

More complete treatment of molecular rota-
tions and vibrations would involve

e 3—D quantum mechanics of multiparticle
systems. Calculations difficult so approxa-
tions necessary.

e More realistic (anharmonic) potential func-
tions, such as the Morse oscillator (see p.
384).



Problems

For next week (by Friday) do 11.1, 11.2 and
11.5. We will discuss these and some of the
in-text examples in class next week.

Also take a look at the file in the course area
whose filenames start with 1985xxWeisskopf, which
give interesting order-of-magnitude essays on
these topics.
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