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Hydrogen bonding (finishing the survey)

Molecules can be bound by a hydrogen atom

that is part of one of the molecules—the pro-

ton make a positive charge center on the mole-

cule that can be attracted to areas of enhanced

negative charge on another polar molecule.

H bonding is relatively weak, but extremely im-

portant in biological systems.
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Rotation and Vibration

In gas phase, a molecule has

electronic energy due to interaction between

electrons and nucleus;

translation energy due to motion of CM through

space;

rotational energy due to motion about the

CM; and

vibrational energy due to vibration of con-

stituent atoms.

E = Eel + Etrans + Erot + Evib
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Rotation Consider a diatomic (“dumbell”) atom.

Has 2 rotational degrees of freedom. See fig-

ure 11.6.

The angular momentum is

L = (m1r
2
1 +m2r

2
2)ω = Iω

and the rotation energy is

Erot =
1

2
Iω2

eliminate ω

Erot =
L2

2I
.

Note the similarity to translational KE of a par-

ticle:

T =
p2

2m
.
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Reduced mass

I depends on the rotation axis. If we use the

CM as the axis, then

ICM =

(
m1m2
m1 +m2

)
R20 ≡ µR20

where R0 is the interatomic separation and µ is

the reduced mass:

µ =
m1m2
m1 +m2

.

This same form of reduced mass is also used

in gravitational orbit problems in celestial me-

chanics.
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Quantize angular momentum

L is dynamical, so L2 becomes quantized. The

rule is

L2 = `(` + 1) h̄2 ` = 0, 1, 2 . . .

This restricts rotational energy:

Erot =
h̄2

2ICM
`(` + 1)

Putting in the integers you get

h̄2

2ICM
· {0, 2, 6, 12, 20, 30, 42, . . . }

as rotational energy levels.
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The spacing between levels is

∆Erot =
h̄2

ICM
`

where ` is the highest of the adjacent levels.

The same procedure can be applied to more

complex molecules by using an appropriate ICM.

It is interesting to note that microwave ovens

act by exciting the rotational levels of water

molecules, and then this energy is transferred

to vibrational modes as thermal energy.
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Molecular Vibration

Consider a molecule as a pair of masses joined

by an effective spring of constant K. If ξ1, ξ2
are displacements from equilibrium of the masses,

the elastic energy is

U =
1

2
K(ξ1 − ξ2)

2.

Note that ξ1 − ξ2 will be the total stretch. If

we go to CM coordinates and use the reduced

mass µ, then p2 = −p1 and

KEvib =
p21
2µ
.

This all describes a 1–D oscillator with vibra-

tion coordinate ξ = ξ1 − ξ2.

7



This gives us the Schrödinger equation

−
h̄2

2µ

d2

dξ2
ψ +

1

2
Kξ2ψ(ξ) = Evibψ(ξ)

which is the one for a 1-d quantum oscillator.

Using the known solution, we get

Evib = (ν +
1

2
) h̄ω; ν = 0, 1, 2, . . .

This gives a set of energy levels

{
1

2
,
3

2
,
5

2
,
7

2
, . . . } h̄ω.

Also

K = µω2

if we need to find the effective force constant.
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More realistic models

More complete treatment of molecular rota-

tions and vibrations would involve

• 3–D quantum mechanics of multiparticle

systems. Calculations difficult so approxa-

tions necessary.

• More realistic (anharmonic) potential func-

tions, such as the Morse oscillator (see p.

384).
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Problems

For next week (by Friday) do 11.1, 11.2 and

11.5. We will discuss these and some of the

in-text examples in class next week.

Also take a look at the file in the course area

whose filenames start with 1985xxWeisskopf, which

give interesting order-of-magnitude essays on

these topics.
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