Particle classification

D. Craig

2006-04-17

Categories

Hadrons interact via strong force
Mesons spin 0,1 and $\mathrm{m}_{e}<\mathrm{m}<\mathrm{m}_{\mathrm{p}}$
Baryons spin $\frac{1}{2}, \frac{3}{2}, \frac{5}{2} m \geq m_{p}$. Including p, n. Decay products always include a p.

Leptons, spin $\frac{1}{2}$, appear to be structureless point particles.

- electron (e^{-}), electron neutrino v_{e}
- tau τ^{-}, tau neutrino γ_{τ}
- mu, μ^{-}, mu neutrino γ_{μ}.

Plus their respective antiparticles.

Neutrino physics

Neutrinos have a helicity: spin is aligned with $\overrightarrow{\mathbf{p}}$ for antineutrinos, opposite for neutrinos.

Neutrinos seem to have a small ($\sim \mathrm{eV}$) mass. This is difficult to measure.

Neutrino oscillations have been recently confirmed. The different neutrion types can among themselves as they propagate from a source. This explains the solar neutrino problem and should permit determination of the neutrino masses.

Conservation Laws

In nuclear reactions or decays, the following are conserved, adding up the numbers for the types of particles:

Baryon number $B= \pm 1$ for baryons/antibaryons, $B=0$ for others.

Lepton number $\mathrm{L}= \pm 1$ for electrons and their neutrinos, muon and tau families hav $\mathrm{L}=0$.

Strangeness Some heavy hadrons are produced in pairs in reactions, such as the K, Λ, Σ. They have strangeness numbers that are conserved in reactions.

Resonance particles

The very short lifetime Δ^{+}, of mass $1231 \mathrm{MeV} / \mathrm{c}^{2}$. Consider

$$
e^{-}+p \rightarrow e^{-}+\Delta^{+}
$$

followed in $6 \times 10^{-24} \mathrm{~s}$ by

$$
\Delta^{+} \rightarrow \pi^{+}+\mathrm{n}
$$

and the direct reaction

$$
e^{-}+p \rightarrow e^{-}+\pi^{+}+n
$$

where no Δ^{+}is produced. How to tell them apart? The Δ^{+}will not last long enough to leave a track.

The decay of the Δ^{+}must satisfy

$$
E_{\Delta}^{2}=\left(p_{\Delta} c\right)^{2}+\left(m_{\Delta} c^{2}\right)^{2}
$$

or

$$
m_{\Delta} c^{2}=\sqrt{E_{\Delta}^{2}-\left(p_{\Delta} c\right)^{2}}
$$

We can't measure E_{Δ} and $\overrightarrow{\mathbf{p}}_{\Delta}$, but after the decay we can measure the outgoing particle properties, so $\mathrm{E}_{\Delta}=\mathrm{E}_{\pi}+\mathrm{E}_{\mathrm{n}}$ and $\overrightarrow{\mathbf{p}}_{\Delta}=\overrightarrow{\mathbf{p}}_{\pi}+\overrightarrow{\mathbf{p}}_{\mathrm{n}}$, and

$$
m_{\Delta} c^{2}=\sqrt{\left(E_{\pi}+E_{n}\right)^{2}-\left(\overrightarrow{\mathbf{p}}_{\pi}+\overrightarrow{\mathbf{p}}_{n}\right)^{2} c^{2}}
$$

This will be 1231 MeV if a Δ^{+}decay is involved. If not, a broad range of values is possible for the direct reaction.

A histogram of energy values for this type of reaction will show a peak at the particle energy for a rapidly decaying particle. See fig 15.8

