Particle classification

D. Craig

2006-04-17

Categories

Hadrons interact via strong force

Mesons spin 0,1 and $m_e < m < m_p$

Baryons spin $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$ m \ge m_p. Including p, n. Decay products always include a p.

Leptons, spin $\frac{1}{2}$, appear to be structureless point particles.

- electron (e^-), electron neutrino v_e
- tau τ^- , tau neutrino ν_τ
- mu, μ^- , mu neutrino ν_{μ} .

Plus their respective antiparticles.

Neutrino physics

Neutrinos have a **helicity:** spin is aligned with \vec{p} for antineutrinos, opposite for neutrinos.

Neutrinos seem to have a small (~eV) mass. This is difficult to measure.

Neutrino **oscillations** have been recently confirmed. The different neutrion types can among themselves as they propagate from a source. This explains the **solar neutrino problem** and should permit determination of the neutrino masses.

Conservation Laws

In nuclear reactions or decays, the following are conserved, adding up the numbers for the types of particles:

Baryon number $B = \pm 1$ for baryons/antibaryons, B = 0 for others.

Lepton number $L = \pm 1$ for electrons and their neutrinos, muon and tau families hav L = 0.

Strangeness Some heavy hadrons are produced in pairs in reactions, such as the K, Λ, Σ . They have **strangeness** numbers that are conserved in reactions.

Resonance particles

The very short lifetime Δ^+ , of mass 1231 MeV/c². Consider

$$e^- + p \rightarrow e^- + \Delta^+$$

followed in 6×10^{-24} s by

$$\Delta^+ \to \pi^+ + n$$

and the direct reaction

$$e^- + p \rightarrow e^- + \pi^+ + n$$

where no Δ^+ is produced. How to tell them apart? The Δ^+ will not last long enough to leave a track.

The decay of the Δ^+ must satisfy

$$\mathsf{E}_\Delta^2 = (\mathsf{p}_\Delta c)^2 + (\mathsf{m}_\Delta c^2)^2$$

or

$$\mathsf{m}_{\Delta}\mathsf{c}^2 = \sqrt{\mathsf{E}_{\Delta}^2 - (\mathsf{p}_{\Delta}\mathsf{c})^2}$$

We can't measure E_{Δ} and $\vec{\mathbf{p}}_{\Delta}$, but after the decay we can measure the outgoing particle properties, so $E_{\Delta} = E_{\pi} + E_n$ and $\vec{\mathbf{p}}_{\Delta} = \vec{\mathbf{p}}_{\pi} + \vec{\mathbf{p}}_n$, and

$$m_{\Delta}c^2 = \sqrt{(E_{\pi} + E_n)^2 - (\vec{\mathbf{p}}_{\pi} + \vec{\mathbf{p}}_n)^2 c^2}.$$

This will be 1231 MeV if a Δ^+ decay is involved. If not, a broad range of values is possible for the direct reaction.

A histogram of energy values for this type of reaction will show a peak at the particle energy for a rapidly decaying particle. See fig 15.8