Criticality and time constants

D. Craig, WTAMU

2006-04-03

Time constants in fission

In a reactor with fuel elements and a moderator for slowing the neutrons to thermal energies, the neutrons are characterized by a time constant τ , which includes moderation time ~ 10^{-6} s, and diffusion time until absorption ~ 10^{-3} .

The number of neutrons at a time t is

$$N(t) = N_0 e^{(k-1)t/\tau}$$

where k is the neutron reproduction factor for the reactor. The time constant for this exponential is $\tau/(k-1)$.

If k=1.01 and $\tau=10^{-3}$ s, then

$$\tau/(k-1) = 0.1 s$$

and

$$N(t) = N_0 e^{t/(0.1 s)}.$$

Never underestimate an exponential. In one second, $N = N_0 e^{10} = 22\,000N_0$.

In power reactors, k < 1 for *prompt* neutrons. k is pushed over 1 via the *delayed* neutrons released after the fission reactions. This gives the reactor a long enough time constant for easier control. **Delayed critical:** $k \sim 1$ for delayed neutrons only. N rises at constant controllable rate. Power reactors.

Delayed supercritical: k > 1 for delayed neutrons.

Prompt critical: $k \sim 1$ for prompt neutrons.

Prompt supercritical: k > 1 for prompt neutrons. Very rapid neutron flux, power rise possible. In a critical mass of very enriched material, this makes a fission explosion.

Interesting sites on criticality safety

- Lawrence Livermore Superblock, modern handling of Pu: http://www.llnl.gov/str/March01/Sefcik.html
- The Criticality Safety Information Research Center (CSIRC), LANL report on incidents from the Manhattan project to 2000: http://www.csirc.net/library/la_13638.shtml