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1.0 Introduction
The internal waveguide of a quantum cascade laser will only support certain modes of the laser field. The internal waveguide typically 
consists of reflective or semi-reflective materials layers above and below the active region layers, and may include the substrate. The 
reflective layers are typically metal or heavily-doped semiconducting material. The waveguide code is tasked with receiving any series of 
layers from the user (material, width, and doping), and calculating the fundamental mode for that structure at a certain frequency. From the 
mode, we know the loss, wavenumber, and confinement factor that the laser radiation field will experience. Because the waveguide 
calculations depend only on the fixed waveguide structure and a frequency, we carry them out at the beginning of the code before entering 
the iterative loops. However, we do not know in advance the lasing frequency. The solution is to run the waveguide calculations for several 
possible frequencies and generate a lookup table. Then, later in the iterative loops when the waveguide parameters are needed and the 
frequency known, the parameters can be simply interpolated from the lookup table.

Our code currently employs a simple one-dimensional slab waveguide model. The width and depth of a QCL is typically so much larger than 
its height that the QCL is approximated to be uniform and infinite in these dimensions, which reduces the problem down to one dimension. 
Note that individual layers within the active region are so thin compared to the waveguide layers, that we assume their effects to be 
negligible. We instead model the entire active region as one waveguide layer with a doping equal to the average of the actual layer dopings.

2.0 Complex Permittivity
We use the Drude model for the complex permittivity εc of each layer,

c =
ne2 2

m*12 i

−1

where n is the free carrier density, and τ is the electron momentum relaxation time. For gold, nGold=5.6×1028 and τGold=5×10−14 . For GaAs, 
the free carrier density is just the ionized doping density and the electron relaxation time is found from experiment to be: 



τGaAs=10−13+ 0.71×1010

n+2.2×1021

where the free carrier density is in units of m-3 and the relaxation time is in seconds. Similar expressions for other materials can be found in 
the literature.

3.0 Mirror Losses
Any loss causes the intensity of the electromagnetic wave to attenuate in space:

I  z =I 0 e− z

After one full round trip, the intensity lost out the front mirror (mirror two) diminishes the wave, so that the resultant intensity is the original 
intensity times the reflectivity R2 of the second mirror.:

I 2 L=R2 I 0

Compare this to the first equation and solve for the loss:

R2 I 0=I 0 e−M2 2 L

M2=−
ln R2

2 L
 (For a GaAs/air interface, R = 0.32)

Here L is the length of the QCL cavity in the direction that the radiation is emitted. The mirror loss due to the back mirror has the exact same 
form.

4.0 General Waveguide Equations
Maxwell's equations state:

∇⋅D=     ∇⋅B=0     ∇×E=− ∂B
∂ t     ∇×H=J∂D

∂ t

Assume the free currents and free charges are negligible so that this becomes:



∇⋅D=0     ∇⋅B=0     ∇×E=− ∂B
∂ t     ∇×H=∂D

∂ t

In any one region let us assume the material is uniform, linear, and isotropic so that D = εE and B = μH, leading to:

∇⋅E=0     ∇⋅H=0     ∇×E=− ∂H
∂ t

∇×H= ∂E
∂ t

Assume the waveguide has a uniform shape along its axis, and its axis is in the z direction. All of the fields therefore have a harmonic free-
wave solution in this dimension with wave number kz. Also assume that all of the fields are oscillating harmonically in time at the same 
frequency ω:

E=Ex , y ei k z z−i t   H=H x , yei k zz−i t

Using these forms, Maxwell's equations become:

E z=
i

k z
[∂E x

∂ x

∂ Ey

∂ y ]     H z=
i
kz
[∂ H x

∂ x

∂H y

∂ y ]     ∇×H=−iE     ∇×E=i H

The first two equations give us the parallel fields if we know the transverse fields. The last two equations can do the opposite. If we 
manipulate the last two equations, we can get them in a form where we can calculate the transverse fields if we know the parallel fields. 
Expand the fields and curls into parallel and transverse components:

 ∇ tz
∂
∂ z
×HtH z z =−iEtE z z     ∇ tz

∂
∂ z
×EtEz z =i  HtH z z

Distribute through:

∇ t×Ht∇ t×H z zi kz z×Ht=−iEtE z z     ∇ t×Et∇ t×Ez zi kz z×Et=i  HtH z z

Cross both equations on both sides with the unit vector in the z direction to single out the transverse component of the fields on the right:

z×∇ t×H z zi k z z×z×Ht=−i z×Et     z×∇ t×E z zik z z×z×Et=i  z×Ht



The unit vector in the z-direction is perpendicular to the transverse field vectors so that we know ẑ× ẑ×Ht=−H t and ẑ× ẑ×Et=−Et . We 
can also expand into components to show that ẑ×∇ t×H z ẑ=∇ t H z and ẑ×∇ t×E z ẑ=∇ t E z . Using these relations, we find:

∇ t H z−i kz Ht=−i z×Et     ∇ t E z−i kz Et=i  z×Ht

Substitute in back and forth to decouple these equations:

Ht=
i

 2−k z
2 [ kz∇ t H z z×∇ t E z ] E t=

i
2−k z

2 [k z∇ t E z−  z×∇ t H z ]

Define the variable κ2=ϵμω2−k z
2 . This definition will become clear a few steps later. This variable will be determined by the boundary 

conditions in terms of the waveguide's material and geometry. Using this definition, the equations become:

Ht=
i
2 [k z∇ t H z z×∇ t E z ] E t=

i
2 [k z∇ t E z−  z×∇ t H z ]

We now have equations that let us calculate directly the transverse fields if we know the parallel fields. The problem is therefore reduced to 
only needing to solve for the transverse or the parallel fields. 

Now take the curl of Faraday's law and substitute in the Maxwell-Ampere Law without sources. Also take the curl of the Maxwell-Ampere 
Law and insert Faraday's law into it to find:

∇×∇×E=− ∂
2

∂ t 2 E     ∇×∇×H=− ∂
2

∂ t 2 H

Use the vector identity ∇×(∇×A)=∇(∇⋅A)−∇ 2 A and realize that both the electric and magnetic field have no divergence in the 
absence of sources, so that the first term in the expansion drops out. This leaves us with the wave equations:

∇2 E= ∂
2

∂ t 2 E     ∇2 H= ∂
2

∂ t2 H

Inside the waveguide, we have assumed harmonic time and z dependence, which makes the wave equations look like:



[∇ t
22−kz

2 ]E=0     [∇ t
22−k z

2 ]H=0

Now we see in these equations the variable which was defined above as κ2=ϵμω2−k z
2 and recognize it as the transverse wave number

κ2=k x
2+k y

2 . Solving for the frequency we recognize ϵμω2=κ2+k z
2 and ϵμω2=k x

2+k y
2+k z

2 as we would expect. With this definition, the 
wave equations become:

[∇ t
2 2 ]E=0     [∇ t

2 2 ]H=0

The wave equations apply separately to each component of the vector fields. If we are solving for the parallel components they become

[∇ t
2 2 ]E z=0     [∇ t

2 2 ]H z=0

whereas for the transverse components they become

[∇ t
2 2 ]E t=0     [∇ t

2 2 ]H t=0

The general solution to any component i in rectangular coordinates in any one particular region of uniform linear material is:

E i=∑
k x , ky

A ei k x xB e−i k x x C e i ky yD e−i ky y where 2=k x
2k y

2

H i=∑
k x , k y

E e i k x xF e−i k x x G ei ky yH e−i ky y  where 2=k x
2k y

2

Boundary conditions must be applied at each boundary that connects two regions of uniform linear material in order to determine the 
coefficients and the wavenumbers. The boundary conditions will cause the span of possible wave numbers kx and ky to form a discrete set 
called modes. The lowest-order modes are typically the ones excited first and are the ones of most interest. 
The parallel electric and magnetic field components are typically separated and treated as separate modes. By setting Bz = 0 in all of the 
above equations, we get the Transverse Magnetic (TM) modes and by setting Ez = 0 we get the Transverse Electric (TE) modes. 

TM: E t=
i k z

2 ∇ t E z Ht=
i
2 z×∇ t E z       TE: Ht=

i k z

2 ∇ t H z E t=−
i 
2 z×∇ t H z

We can combine each set of equations to relate the transverse fields:



TM: Ht=

kz
z×Et       TE: E t=−

 
k z
z×Ht

In summary, the general rectangular waveguide equations are:

General Rectangular Waveguide Equation Summary: TM Modes (  H  z = 0)

Transverse to Parallel: E z=
i
k z
[∂Ex

∂ x

∂ E y

∂ y ]  
∂H x

∂ x =−
∂H y

∂ y     Parallel to Transverse: E t=
i k z

2 ∇ t E z Ht=
i
2 z×∇ t E z     

Wave Equations: Solve E i=∑
k x , ky

A ei k x xB e−i k x x C e i ky yD e−i ky y or H i=∑
k x , k y

E e i k x xF e−i k x x G ei ky yH e−i ky y   

where 2=2−kz
2 and 2=k x

2k y
2 and i denotes any component x, y, z

Magnetic-Electric Field Relations Ht=

kz
z×Et     

Note that all of these equations apply only in regions of uniform linear materials. Separate regions must be linked by boundary conditions.

General Rectangular Waveguide Equation Summary: TE Modes (  E  z = 0)

Transverse to Parallel: H z=
i
kz
[∂ H x

∂ x

∂H y

∂ y ]  
∂Ex

∂ x =−
∂E y

∂ y     Parallel to Transverse: Ht=
i k z

2 ∇ t H z E t=−
i 
2 z×∇ t H z

Wave Equations: Solve E i=∑
k x , ky

A ei k x xB e−i k x x C e i ky yD e−i ky y or H i=∑
k x , k y

E e i k x xF e−i k x x G ei ky yH e−i ky y   

where 2=2−kz
2 and 2=k x

2k y
2 and i denotes any component x, y, z



Magnetic-Electric Field Relations E t=−
 
k z
z×Ht     

Note that all of these equations apply only in regions of uniform linear materials. Separate regions must be linked by boundary conditions.

5.0 QCL Slab Waveguide Equations
A QCL's active region consists of a sequence of planar epitaxial layers grown on top of each other in the x direction. A quantum selection 
rule dictates that all coherent radiation generated by any QCL is polarized such that the electric field points in the x direction, normal to the 
epitaxial layers. The active region structure thus automatically dictates that Ey = 0 and Hx = 0. Plugging these in the general equations yields:

QCL TM Modes

Transverse to Parallel: H z=0 E z x=
i
kz

∂ E x x 
∂ x

Parallel to Transverse: E x  x=
i k z

2

∂E zx 
∂ x

E y=0 H x=0 H y x =
i
2

∂ E zx 
∂ x

Wave Equations: Ex=∑
k x

 Ae i k x xB e−i k x x or E z=∑
k x

C ei k x xDe−i k x x  or H y=∑
k x

E ei k x xF e−i k x x  where k x
2=2−k z

2

Magnetic-Electric Field Relations    H y x =

kz

E x x 

z

x

y



QCL TE Modes

Transverse to Parallel: E z=0 H z y=
i

k z

∂H y y
∂ y     

Parallel to Transverse: E x y =
i 
2

∂H zy 
∂ y

E y=0 H x=0 H y y =
i kz

2

∂ H zy 
∂ y

Wave Equations: Ex=∑
k y

 Ae i k y yB e−i k y y  or H y=∑
k y

C ei k y yD e−i k y y or H z=∑
ky

G ei k y yH e−i k y y where k y
2=2−kz

2

Magnetic-Electric Field Relations Ex y =
 
kz

H y y      

5.1 Slab Model
Often the width of the QCL is much larger than the height of the QCL. As an approximation we can thus assume that the waveguide is 
infinite and uniform in the y direction. We therefore assume that none of the fields have a y-dependence. This automatically forbids TE 
modes. The fields in the TM modes are already all independent of y. 

For the TM modes, we have a choice of three approaches to solving the problem, either solve for Ex, Ez or Hy. Since the magnetic field only 
has one component, the math should be simplest if we choose to solve for Hy. All of the relevant equations are then:

Solve Hy=∑
k x

Ae i k x xBe−i k x x   by applying boundary conditions.

Then use Ex  x=
k z


H y x  and E z x =

i


∂
∂ x

Hy x  remembering E y=0 , H x=0 , and H z=0 .

We can carry these out into explicit form because we already know the solution:

Ex x =∑
k x

k z


A e i k x xB e−i kx x  E z x =∑

kx

k x


−Ae i k x xBe−i k x x 



The final solutions are then H=y H y xe
i k z z−i t and E= x Ex  xz E z xe

i k z z−i t where k x
2=2−k z

2 .

In the one-dimensional QCL waveguide approach, all of the material boundaries are planes parallel to the y-z plane. The applicable boundary 
conditions then are that the tangential components of the magnetic field H must be continuous and the tangential components of the electric 
field E field must be continuous across the boundary. Let us state this more formally. Each region of linear uniform material has its solutions 
with its own H and E as a function of its own kx, A, B, ε, and μ. Let us use the index i to denote the ith region so that all these properties in 
the ith region are denoted Hi and Ei,  kx,i, Ai, Bi, εi, and μi. Note that the boundary conditions require that all the regions have the same z-
directional wave number kz and frequecy ω. Let the i=0th region be the semi-infinite substrate at the bottom of the stack, the i=1st region be 
the one directly above the substrate, and so on. Also denote the known location of the boundaries between regions as xi where x0 = 0 is the 
origin of the x coordinate and is also the location of the zeroth boundary, the one between the substrate and the next layer. With these 
definitions, the boundary conditions become:

x×Hix i=x×Hi1 xi  where i = 0,1... N-1 where N is the number of layers not including the substrate 

H y , ix i=H y , i1x i

Ai e
i k x , i x iB ie

−i k x , i x i=Ai1e i kx , i1 x iBi1e−i k x , i1 x i

and the other boundary condition is:

x×Ei x i=x×Ei1 xi

E z , ix i=E z , i1x i

k x ,i

i
Ai e

i k x , i x i−Bi e
−i k x , i x i=

k x ,i1

i1
Ai1 ei kx , i1 x i−B i1e−i k x , i1 x i

6.0 Formulating for Numerical Analysis
The problem is to solve for Ai and Bi in each region in terms of the known permittivities εi, boundary locations xi, frequency ω and the 
guessed wave number kz. The wave number kz is guessed and refined until the outermost boundary conditions are met, that of fields 
approaching zero at positive and negative infinity for x.



Add the two boundary condition equations together to eliminate Bi+1 and solve for Ai+1:

Ai1=
1
2 1 k x ,i i1

k x ,i1i Ai e
i k x , i−k x , i1 x i1

2 1− k x , ii1

k x , i1i Bi e
−ik x , ik x, i1 xi

Subtract the two equations to eliminate Ai+1 and solve for Bi+1:

Bi1=
1
21− k x ,i i1

k x ,i1i Aie
i k x, ik x , i1 x i1

2 1 k x , ii1

k x , i1i Bi e
−i k x , i−k x, i1 xi

We now have iteration equations. If we have a trial kz, then because we know ω, εi, and μi we also know kx,i using k x , i=i i
2−k z

2 . Thus if 
we know A0 and B0, we can find all other Ai and Bi using these iteration equations.
We are interested in bound modes, so that the wave must die down to zero at negative and positive infinity. This leads to the conditions:

A0=0 if ℑk x ,00 or B0=0 if ℑk x ,00

AN=0 if ℑk x , N 0 or BN=0 if ℑk x , N 0

There is an overall normalization constant for the mode that can be found and applied after the problem is solved. We take this into account 
by setting the non-zero coefficient of the zeroth layer equal to one and normalizing it at the end to its proper value.

A0=1 if ℑ00 or B0=1 if ℑ00

The system is solved iteratively for the propagation constant kz. First a guess for kz is made (or a grid of guesses), then the iteration equations 
are applied to find the fields everywhere corresponding to this kz. The amount that the coefficients AN and BN in the last region differ from 
what they should be as dictated by the boundary conditions is calculated as the error corresponding to that kz. The right kz is found by 
refining its value until the error is minimized. The lowest-order mode is the one of most importance and it is the one that is found. Note that 
kz is complex-valued so that finding the physical modes amounts to finding the minima in a two-dimensional error landscape.



6.1 Final Numerical Recipe
A. Calculate  the complex permittivity of each layer using the Drude model (see above) and assume non-magnetic material μi =  μ0.

B. Sweep across a grid of initial possible values for the real and imaginary part of the wave vector kz

1. For each complex kz value, calculate the complex x-directional wave number of each waveguide layer using k x , i=i i
2−k z

2  

2. Set A0 and B0 according to the following rule: if ℑk x ,00 then A0=0 and B0=1 , else A0=1 and B0=0

3. Calculate all remaining Ai and Bi using 

Ai1=
1
2 1 k x ,i i1

k x ,i1i Ai e
i k x , i−k x , i1 x i1

2 1− k x , ii1

k x , i1i Bi e
−ik x , ik x, i1 xi

Bi1=
1
21− k x ,i i1

k x ,i1i Aie
i k x, ik x , i1 x i1

2 1 k x , ii1

k x , i1i Bi e
−i k x , i−k x, i1 xi

4. Find the error as the difference between the calculated AN or BN and the required AN or BN according to:

 if ℑk x , N 0 then AN=0 else BN=0

C. Find all mimima in the 2D error landscape as a function of kz. A minima is a grid point where its error value is lower than the error 

value of its eight nearest neighbors.

D. Refine every minimum kz by repeating step B for additional guesses and keeping the ones that give the least error. Use the method of 

gradient descent: step iteratively in the opposite direction of the gradient of the error landscape until the desired precision is met 

according to: [k z ]n1=[k z]n−n∇ f [ k z]n where f(kz) is the 2D functional error landscape as a function of kz.

Due to the complexity of the error landscape, the gradient cannot be solved analytically but the finite difference can be used. The step 

size γn is optimized by finding the first value that minimizes f [ k z]n1 locally. 

E. Choose the kz which corresponds to the lowest-order mode. It is the one with the lowest value for (kx/kz) in the largest layer.

F. Once the lowest order kz has been identified and refined, use step B again to get the final values for Ai and Bi

G. Using the final values of Ai and Bi calculate all the fields across a fine grid of x locations using:



Hy , ix =Ai e
i k x , i xBi e

−i k x , i x E x , ix =
k z

i

Ai e
i k x , i xBie

−i kx , i x  E z , i x =
k x , i

i

−Ai e
i k x , i xBi e

−i k x , i x 

 ∣Hix ∣
2=∣H y ,i x ∣

2 ∣Eix ∣
2=∣Ex ,i x∣

2∣E z ,ix ∣
2

H. Calculate the confinement factor for this waveguide structure at this frequency using the trapezoidal or cubic splines method: 

=
∫

act. reg.
∣E x , ix ∣

2 dx

∫
−∞

∞

∣Eix ∣
2 dx

I. Calculate associated parameters:

Waveguide Loss: w=2ℑk z

Total Cavity Loss: =wM1M2

Threshold Gain: g th=/

Velocity: v= 
ℜk z

 

Effective Index of Refraction: n= c
v

Total Cavity Photon loss rate: W p= v

Total Cavity Photon lifetime:  p=1/W p

J. Repeat Steps A through I for many possible frequencies in order to generate look-up tables.



6.2 Cutoff Frequency
Upon generating the look-up tables, which essentially establish loss vs. frequency and confinement factor vs. frequency trendlines, a 
problem arises. Below a certain frequency, the cutoff frequency, electromagnetic modes cannot propagate. In terms of the practical 
requirements of the rest of the code, the waveguide code should return a confinement factor of zero and a loss of infinity for these 
frequencies. However, the waveguide code is designed to find modes as minima in an error landscape, and cannot find the lack of modes. As 
implemented above, the waveguide code will output erroneous values for frequencies below cutoff, and the rest of the code will use these 
values as if valid, leading to widespread error.

The solution is to have the code determine the cutoff frequency and then hard-set all confinement factors to zero and all losses to infinity 
below this frequency. Note that if we set the confinement factor to perfectly zero, then we will end up with divide-by-zero errors later on in 
the rate equations. In practice, we must set each confinement factor below cutoff to a very small non-zero number; so small that it is 
essentially zero. Similarly, we cannot actually set the losses below cutoff to infinity in a numerical code. We instead set each loss equal to a 
very high number that essentially behaves as infinity.

The cutoff frequency is found by starting at a high frequency on the confinement factor vs. frequency curve, and asymptotically finding at 
what frequency the curve approaches zero confinement.


