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1.0 Introduction
Quantum cascade lasers (QCL's) are fabricated by stacking up alternating layers of semiconducting material with nanoscale thicknesses. This 
heterostructure of layers forms a series of conduction-band quantum wells in the z direction which trap the electrons into subband states.
The eigenstate of an electron in the unperturbed Hamiltonian of a QCL is the product of the Bloch envelope function B(x, y, z), the free 
electron wavefunction in the x and y direction, and the bound quantum-well eigenfunctions ψn(z) in the z direction. 
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The Bloch function factor contains the effects on the electron state due to the non-uniform nature of the crystal potential on the atomic scale. 
We assume the semiconductor layer widths are large compared to the atoms, so we make the approximation that the Bloch function factor is 
negligible. Each electron is pseudo-free in the x and y dimensions because the material is uniform in those dimensions. Even though each 
electron is bound to the crystal in these dimensions, we can treat each as free if we use the effective mass of the electron. The bound-state z-
component wave functions ψn(z) are found by numerically solving the one-dimensional Schrödinger equation when the potential profile is 
known. As developed elsewhere, the potential profile is a combination of the conduction-band edge quantum well profile of the material 
layers, the bias voltage, and the built-in potential which accounts for the effects of space charge. The built-in potential is found by solving 
the Poisson equation.

2.0 Derivation
The one-dimensional time-independent Schrödinger equation for a single electron in the potential V(z) is the Hamiltonian eigenvalue 
equation, where E is the total energy of the electron in the eigenstate:

H ψ=E ψ

The Hamiltonian operator H is just the total energy operator, so we can expand it into a sum of the kinetic energy operator T and the 
potential energy operator V,



(T+V ) ψ=E ψ

T ψ=(E−V )ψ

Expand the kinetic energy T, being careful to preserve the operator nature of the expression and recognizing that the effective mass m* is a 
function of position z because the material changes along this dimension:
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Expand the velocity operators in terms of momentum operators, again being careful with the effective mass:
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The is the fundamental physical equation to be solved. Note that if we make the approximation that the effective mass m*(z) is constant, this 
expression reduces down to the simple textbook form. However, we may not be justified in making such an approximation as the effective 
mass is clearly not constant. In addition, incorporating the z-dependent effective mass is trivial in its implementation.

3.0 Numerical Method
The potential V(z) is too complicated to allow the Schrödinger equation to be solved analytically. We must turn to numerical methods and 
implement them computationally. We choose the fourth-order Runge-Kutta (RK4)numerical method.
 
We must first break the single second-order differential equation into two first-order differential equations before we can apply the RK4 
method.
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In order to apply the RK4 method in a straightforward manner, we define the right side of the equations as the function f and g.
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The RK4 method specifies that the derivatives are expanded into finite differences and the slopes that they equal are set to the weighted 
averages. At this point we have transferred the functions from the continuous dimension z to the discrete dimension zn which is needed for 
numerical computation. 
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Note that for reasons of accuracy, we do not assume that the points zn are evenly spaced, so that we are not assuming zn = nh where h is some 
constant step size. Although this assumption would simplify the equations considerably, the varying thickness of the semiconductor layers 
does not allow it. Instead, we have chosen to set points zn at every boundary between semiconductor layers, and then disperse them evenly 
within the layers. The non-uniform grid of computational points zn must therefore be set up in advance, but remains known and constant for 
the remainder of the calculations.

The finite difference expansions can be solved for the wavefunctions at the advanced points to yield iteration equations:

ψ(zn+1)=ψ(zn)+(zn+1− zn) f ave (z ,ψ2( z ))

ψ2(zn+1)=ψ2(z n)+(z n+1−zn) gave(z ,ψ(z ))



After calculating fave and gave, these equations can be used iteratively to calculate the entire wavefunctions if the initial values ψ(z0) and ψ2(z0) 
are given. 

The RK4 method defines the weighted average slopes to be:
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We apply these definitions to our problem by explicitly inserting the expressions for f and g and evaluating:

f 1=m *(z n)ψ2( zn)  and g1=− 2
ℏ2 (E−V (z n))ψ(z n)

f 2=m*( 1
2
(z n+1+z n))[ψ2( zn)+

1
2
(zn+1− zn)g1]  and g2=− 2

ℏ2 ( E−V ( 1
2
( zn+1+z n))) [ψ(z n)+

1
2
( zn+1−z n) f 1]

f 3=m*( 1
2
(z n+1+zn)) [ψ2(z n)+

1
2
( zn+1−z n) g2]  and g3=− 2

ℏ2 (E−V ( 1
2
(z n+1+z n)))[ ψ(zn)+

1
2
(z n+1−zn) f 2]

f 4=m*( zn+1) [ψ2(z n)+(z n+1−zn) g3]  and g 4=− 2
ℏ2 (E−V ( zn+1))[ ψ(zn)+(zn+1− zn) f 3]



We do not know the effective masses or the potential energies at the midpoints as required by these equations. We therefore approximate 
them as the average of the two nearest neighbors. After making this approximation, the final computational algorithm is obtained.

4.0 Final Numerical Algorithm

1. Starting at the point z0, apply the following equations iteratively, one point at a time, until the entire function is known.

2. Calculate the current location's step size: hn=z n+1−zn as well as the constant a=− 2
ℏ2

3. Calculate the midpoint values of the potential and effective mass: V mid=
1
2
(V (z n+1)+V (zn)) , m *mid=
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4. Calculate the RK4 slopes. Note that these must be done in this order as they are interdependent:
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5. Calculate the wavefunction values at the next point:
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4.1 Boundary Conditions
This method requires the initial conditions ψ(z0) and ψ2(z0) to be known. However, the boundary conditions that we have are
 ψ(z0) = 0 and ψ(zlast) = 0. We are therefore using the boundary conditions ψ(z0) = 0 and ψ2(z0) = 1, understanding that the entire wavefunction 
will be off by an overall scale factor. This scale factor error goes away however when we normalize the wavefunction at the end to ensure 
that there is 100% probability of finding the electron anywhere in its wavefunction. The actual boundary conditions that should be 
implemented are pseudo-periodic boundary conditions because a typical QCL has 100 repetitions of the same core period structure. 
However, periodic boundary conditions are difficult to implement directly without requiring substantial computational cost. Instead, we 
apply the Dirichlet boundary conditions, but solve for the wavefunctions across three periods of the QCL core structure. After finding all 
valid wavefunctions, we throw away all wavefunctions with a center of mass that lies in the outer periods, and copy all wavefunctions with a 
center of mass in the central period to the outer periods for future use. This process ensures periodic boundary conditions.

4.2 Eigenvalues
These equations depend on the energy E of the electron in its state, but E is not known beforehand. There are actually several possible 
solutions to a certain potential; the eigenstate wavefunctions ψn of the system; each with its own energy En. The correct eigenenergies En are 
the ones that yield valid bound wavefunctions; wavefunctions that do not blow up towards infinity outside the wells. Programatically, we 
must guess En, calculate the corresponding wavefunction using the algorithm listed above, then iteratively refine our guess for En by 
minimizing the error in the wavefunction. Because the wavefunction is supposed to match the boundary condition ψ(zlast) = 0, the actual 
amplitude squared at the bounadary |ψ(zlast)|2 can be taken as the error. By calculating a sweep of possible En values and their corresponding 
wavefunction errors, an error landscape can be generated. The correct energies are the minima in such an energy landscape. The minima are 
identified, and then refined using a binary search method.

4.3 Normalization
Electron wave functions should always be normalized before being used in any subsequent calculations. The wave functions should not be 
magnitude squared unless explicitly required, as the complex phase of the wavefunction is needed is some subsequent calculations. The 
squared wave functions constitute a probability density, thus the proper way to normalize each is by integrating:

Define ψnorm(z )=A ψunnorm( z) and apply the concept that the probability of being found anywhere is 1:
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ψnorm(z )= ψunnorm( z )
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The integral is done numerically using the non-uniform-grid trapezoidal method. The integral cannot be done over infinity, but is instead 
done over the three periods of the QCL core structure used in this code. Note that the location points z and the wavefunctions are defined on 
a non-uniform grid in order to preserve material layers widths exactly. Using a non-uniform grid means that traditional numerical integration 
methods such as Simpson's rule and the Boole rule cannot be used.


