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1.0 Introduction
We have derived the scattering of one electron with one other electron. While the problem really involves a multi-electron interaction, the 
multi-electron Hamiltonian is too complicated to be solved. Instead, we can take into account the effect of the multi-electron interaction in 
an approximate way. We assume that only one electron is close enough to the original electron to actually scatter off it in a fully quantum 
way, and thus the previous treatment still applies. We then assume all the other electrons are not negligible, but are far enough way that they 
behave semi-classically as a sea of electrons that exert a net influence. The other electrons tend to block and weaken the interaction between 
the two close electrons and therefore their effect is described as screening. Classically, this macroscopic screening effect in matter is handled 
by replacing the permittivity of free space with a permittivity value that is representative of the material. We have in effect already 
incorporated some level of screening in our treatment by using the material's permittivity. The problem is that that permittivity is for a bulk 
volume of material. In QCL's we have nano-scale layers of differing materials leading to quantum wells and quantized states for the 
electrons which do the screening. So, to incorporate a more exact form of screening, we should replace the bulk permittivity in the above 
equations with a new permittivity that depends on the quantized states. Because it depends on the quantized states, this new permittivity 
must appear within all of the integrals in the electron-electron scattering equation. Once we have found the screening constant, we simply 
divide it into the innermost integrand of the e-e scattering equation.

2.0 Two-dimensional Electron Gas Properties
Let us investigate a two-dimensional electron gas. Electrons in quantum wells, such as in a QCL, are trapped in the z dimension and pseudo-
free in the x and y dimensions. They act as a two-dimensional gas of electrons. 

The density of electron states for a two-dimensional gas, per unit area is:

g k =
2 gv

22

where gv is the valley degeneracy factor of the material (gv = 1 for GaAs), and the factor two in the numerator accounts for both electron spin 
states.



We want a density of electron states in terms of energy and not wave number. By “density of electron states in terms of energy”, we mean 
the total number of electron states in a unit swath of energy, so that:

g E =
d N E 

d E

The number of electron state at a given energy N(E) is just the area in k-space Ak times the density of electron states g(k):

g E = d
d E [Ak g k ]

g E = d
d E [ k 2 2 g v

22 ]
In order to do the derivative, we must switch k to E using the standard relation: E=ℏ2 k 2/2 m*

g E = d
d E [ 2 m* E

ℏ2  2 gv

22 ]
g (E )=

g v m *
πℏ2 electron states per unit energy per unit area in a two-dimensional electron gas

This is a surprisingly simple result. We must remember that g(E) drops to zero outside the subband (if E < En).

2.1 Fermi Energy of a Two-dimensional Electron Gas
The total 2D electron density in a subband at absolute zero temperature is just the total number of electron states from the zero energy of the 
subband to the Fermi energy:

N=∫
0

E F

g (E)d E



N=
g v m *
 ℏ2 ∫

0

E F

d E

N=
g v m *
 ℏ2 E F where the Fermi energy is measured relative to the subband minimum.

N=
g v


k F

2

2

Solve for the Fermi wavenumber

k F= 2 N i

g v

Here kF is the two-dimensional Fermi wavevector magnitude of the subband i relative to the subband minimum, defined at T= 0. Also, Ni is 
the electron density of the subband i, and gv is the degeneracy of the material where gv = 1 for GaAs. This entire treatment has been two-
dimensional, so it should be obvious that Ni is the two-dimensional electron density. This expression is only valid at zero temperature. We 
need the general expression which is valid at all temperatures.

The total 2D electron density in a subband at any temperature is:

N=∫
0

∞

g (E) f (E )d E

N=
g v m *
πℏ2 ∫

0

∞

f (E )d E

N=
g v m *
πℏ2 ∫

0

∞ 1
1+e( E−E F)/ kB T d E

N=
g v m *
πℏ2 [E F+k B T ln (1+e−E F / kB T )]



N=
g v m *
πℏ2 k B T ln(1+e

E F

kB T )
Solve for the Fermi energy:

E F=k BT ln[exp( πℏ2 N
k B T gv m*)−1]

Now let's try to derive the  general expression for the permittivity of a solid using a self-consistent field (SCF) approach, which has been 
shown to be equivalent to a random-phase approximation (RPA) approach.

3.0 General Screening Expression
By definition, the relative permittivity connects the polarization field P with the total electric field E inside a material:

P=0 r−1E

We must remember that in the general realm of electrodynamics, causality means that induced polarization fields at different times and 
places all add together to a total field at a certain time and place. This means that the solution would be an integral over many time points. 
Instead let us transform to frequency space and work with just one wave number component q of the total solution. Let us show this 
explicitly:

P(q ,t )=ϵs(ϵr(ω , q)−1)E(q , t)

Here, ϵs is the static permittivity of the material and ϵr is a relative permittivity screening constant that represents how the total permittivity 
deviates from the static value. Solve for the screening constant:

ϵr(ω ,q)=1+ P(q , t)
ϵs E(q , t)

Express the electric field in terms of the negative gradient of some total potential V, Fourier transform, and plug in:

Ex ,t =−∇V x , t 



Eq , t =−i q V q ,t 

ϵr(ω ,q)=1− P(q ,t )
ϵs i q V (q ,t)

The polarization field is created by the induced charge density ρpol. Let us Fourier transform this and plug it into the permittivity relation:

∇⋅Px , t =−pol x , t 

i q⋅Pq , t =−polq , t 

ϵr(ω ,q)=1− P(q ,t )
ϵs i q V (q ,t)

ϵr(ω ,q)=1+ i q⋅P(q , t)
ϵs q2V (q , t)

ϵr(ω ,q)=1− 1
ϵs q2

ρpol(q ,t)
V (q , t)

The classical induced charge density is the sum over the different energy states of the quantum density matrix:

ρpol (q , t)=− e
L3∑

k
<k |ρ1 |k+q >

ϵr(ω ,q)=1+ e
ϵs q2 L3∑

k

< k |ρ1 |k+q >
V (q , t)

We want the ratio of the density matrix to the potential in terms of quantum statistical distributions. We turn to the Louisville equation and 
apply first-order perturbation theory to get it.

Just as the Schrödinger equation describes how a pure quantum state evolves in time, an analog can be derived from it that describes the time 
evolution of a mixed statistical ensemble of quantum states, known as the density matrix ρ. The analog equation is known as Von Neumann's 
(or Louisville's) equation:



i ℏ ∂
∂ t

=[H ,]

Apply first order perturbation theory. The interaction Hamiltonian H is a sum of the unperturbed Hamiltonian H0 and the perturbation H1:

H=H 0H 1

Here the unperturbed state is that of the pseudo-free electron inside the solid (according to the effective mass approach):

H 0=
P2

2m *
and H 0 | k >=E k |k >

The perturbing interaction is that of the total potential, so that H1 = eV. The factor e is there because the perturbing Hamiltonian is the 
potential energy of the electron, and we have defined V as the scalar potential.

Similarly, the density matrix operator is expanded into a sum of unperturbed and perturbed contributions:

=01

The unperturbed density matrix operator just gives the electron distribution in a solid in equilibrium, namely the Fermi distribution:

0 |k >= f Ek  |k >

Put these expansions in the Louisville equation:

i ℏ ∂
∂ t

=[H ,]

i ℏ ∂
∂ t

=H −H

i ℏ
∂01

∂ t
=H0H 101−01H 0H 1



i ℏ
∂0

∂ t
−H 00−0 H 0i ℏ

∂1

∂ t
=H01H 10H11−0 H 1−1 H 0−1 H 1

The first three terms on the left are the Louisville equation without any perturbation present and equates to zero. Also, because we are only 
using first order perturbation theory, all second order terms can be canceled, namely H1ρ1 and ρ1H1

i ℏ
∂1

∂ t
=H 01H 10−0 H 1−1 H 0

Apply these operators between states k and k + q:

i ℏ ∂
∂ t

< k |1 |kq >=< k | H 01 |kq >< k | H 10 |kq >−<k | 0 H 1 |kq >−<k |1 H 0 |kq >

Apply the operators as defined above:

i ℏ ∂
∂ t

< k |1 |kq >=Ek−Ekq<k |1 |kq > f Ekq− f E ke V q , t

Assume the matrix element varies harmonically in time with the fields and do the derivative, then solve for the ratio of matrix element to 
potential:

< k |1 |kq >
V q ,t 

=e
f Ekq − f Ek 
E kq−Ek−ℏ

This is the ratio we were looking for, so let us plug it back into the permittivity equation:

ϵr(ω , q)=1+ e2

ϵs q2 L3∑
k

f (Ek+q)− f (Ek )
Ek+q−Ek−ℏ ω General expression for the relative permittivity in terms of quantum distributions, in SI units

For a two-dimensional system with a quantized third dimension, and in the static limit, this becomes:



ϵr(q)=1+ e2

ϵs q L2 Aii→ ii(q)∑
k

f (Ek+q)− f (Ek)
E k+q−Ek

Define a polarizability such that:

ϵr(q)=1+ e2

2ϵs q
Πii (q)Aii ii(q) where Πii(Q)= 2

L2∑
k

f (Ek+q)− f (Ek )
Ek+q−Ek

In reality, an electron is screened by all the electrons in all subbands, not just its own. We therefore sum over subbands:

ϵr(q)=1+ e2

2ϵs q∑i
Πii(q) Aii ii(q) where Πii(Q)= 2

L2∑
k

f (Ek+q)− f (Ek )
Ek+q−Ek

4.0 Evaluation of the General Expression
Expand out the Fermi distributions and energies into their explicit forms:

Πii (q)=
2
L2∑

k

1

1+e
(
ℏ2∣k+q∣2

2 m* −E F )/ kB T
− 1

1+e
( ℏ

2 k 2

2 m*
−E F)/k B T

ℏ2∣k+q∣2

2 m*
− ℏ2 k 2

2 m *

Define the Fermi wave-vector k F=√2 m* EF /ℏ , being careful to remember that the Fermi energy can go negative relative to the subband 
minimum, and therefore the Fermi wave-vector can be imaginary. Assume that the crystal is large enough that the set of quantum states for 
the electron becomes a continuous band of states. The sum therefore becomes an integral:

Πii (q)=
4 m*

ℏ2(2π)2∫ d k ( 1
q2+2k⋅q )[ 1

1+e(k
2+q 2+2 k⋅q−kF

2 )ℏ2 /2 m* k B T −
1

1+e(k2−k F
2 ) ℏ2/2 m* k BT ]

Πii(q)=
4 m*

ℏ2(2π)2∫
0

∞

d k∫
0

2π

k d θ ( 1
q2+2 k qcos (θ))[ 1

1+e(k
2+q2+2k qcosθ−kF

2 )ℏ2 /2m* kB T
− 1

1+e(k
2− kF

2 )ℏ2/2m*k BT ]



4.1 Polarizability at Zero Temperature
For the special case of zero temperature, T = 0, this reduces to:

Πii (q , k f ,T =0)= 4 m *
ℏ2(2π)2

∫
0

∞

d k∫
0

2π

k d θ( 1
q2+2 k q cos (θ))[θ(k F

2−k 2−q2−2 k q cosθ)−θ(k F
2−k 2)]

Πii(q , k f ,T =0)= 4m *
ℏ2(2π)2 [∫0

2π

k d θ∫
0

∞

d k ( 1
q2+2 k qcos (θ))θ(k F

2 −k2−q2−2 k q cosθ)+π [√(1/2)2−(k F /q)
2−1/ 2]]

Πii(q , k f ,T=0)= m*
ℏ2π

[1−θ(q−2k F )√1−(2 k F /q)
2]

4.2 Polarizability at Any Temperature
To solve for any temperature, we want to express the Fermi functions differently.
Start with the definition of the hyperbolic tangent:

tanh x= ex−e−x

ex+e−x

Solve partially for the exponential to find:

1
1+e x=

1
2(1−tanh( x

2 ))
Looking up in an integral table, we find that the the hyperbolic tangent is the solution to the integral:

[ tanh x ' ]a
b
=∫

a

b d x '
cosh2 x '

Take the upper limit to be infinity and the lower limit as x.



[ tanh x ' ]x
∞=∫

x

∞ d x '
cosh2 x '

1−tanh x=∫
x

∞ d x '
cosh2 x '

so that

1
1+e x=

1
2 ∫x/2

∞ d x '
cosh2 x '

We can make the integral span all positive numbers if we force the lower contribution to be zero using the Heaviside step function:
 
θ(x) = 1  if  x > 0,  θ(x) = 0  if  x < 0, so that

1
1+e x=

1
2∫0

∞ θ( x '−x /2)d x '
cosh2 x '

Substitute x=
Ek−E F

k BT  

1

1+e
Ek−E F

kB T

=
1
2∫0

∞
θ( x '−

E k−E F

2k B T )d x '

cosh 2 x '

Substitute x '=
E−E F

2 k B T and d x '= d E
2 k B T



1

1+e
Ek−E F

kB T

=
1
2∫0

∞
θ( E−EF

2 k B T
−

Ek−EF

2k B T ) d E
2 k B T

cosh2( E−EF

2 k B T )
1

1+e
Ek−E F

kB T

=∫
0

∞ θ (E−E k )d E

4k BT cosh2( E−E F

2k BT )
Expand using E k=

ℏ2 k2

2m*
, E F=

ℏ2 k F
2

2 m *
, E=ℏ2 k '2

2 m*
, and d E=ℏ2 k ' d k '

m*

1

1+e
ℏ2 (k2−k F

2 )
2 m* kB T

= ℏ2

m *∫0
∞ θ (k '2−k 2)k ' d k '

4 k B T cosh2(ℏ2(k '2−k F
2 )

4 m* k BT )
This is a general mathematical identity. We now apply this identity to the two exponential terms in the general polarizability expression:

Πii (q)=
4

(2π)2
∫
0

∞

d k∫
0

2π

k d θ( 1
q2+2k qcos (θ))∫0

∞

[θ (k '2−k 2−q2−2k qcosθ )−θ(k '2−k2 )] k ' d k '

4k BT cosh 2(ℏ2(k '2−k F
2 )

4m* k B T )
Πii (q)=

4
(2π)2

∫
0

∞

d k ' k '

4 k B T cosh2(ℏ2(k '2−k F
2 )

4m *k B T )[
∫

0

∞

d k∫
0

2π

k d θ ( 1
q2+2k qcos (θ))(θ (k '2−k 2−q2−2k q cos θ)−θ (k '2−k 2))]

Comparing the factor in brackets to the T = 0 expression, we find they match except for one important difference. This factor is a function of 
the integration variable k'.



Πii(q)=
ℏ2

m*∫0
∞

d k '
k 'Πii (q , k ' , T=0)

4k BT cosh 2(ℏ2(k '2−k F
2 )

4 m * k B T )
5.0 Final Form of Screening
In summary, there is one screening constant used for all subbands and it is found using:

ϵr(q)=1+∑
i

e2

2ϵs q
Πii(q)Aii ii(q) where

Πii (q)=∫
0

∞

d E
Πii (q , E , T=0)

4 k B T cosh2( E−EF

2k B T ) and

Πii(q , k ' , T=0)= m*
ℏ2π

[1−θ(q−2k ')√1−4k '2/q2 ] and E=ℏ2 k '2

2 m '

The integral is done numerically over a uniform grid using standard methods such as Simpson's rule or the Bode (Boole) rule.

6.0 Comparison with Literature
This derivation is consistent with the one first put forth by Maldague1.

Harrison2 makes the assumption that E = EF  in the zero-temperature polarizability and therefore takes it out of the integral, so that the 
integral can be evaluated analytically. Harrison finds:

Πii (q)=
m *

2ℏ2π
(1+tanh(EF /2 k B T ))[1−θ(q−2 k f )√1−4 k f

2 /q2]

This form was found to lead to significant errors.

[1] Maldague, P., “Many-body corrections to the polarizability of the two-dimensional electron gas,” Surface Science 73 (1978).

[2] Harrison, P., “Quantum Wells, Wires and Dots,” Wiley, (2000).


