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PROBLEM:
A transmission line consisting of two concentric circular cylinders of metal with conductivity σ and 
skin depth δ, as shown, is filled with uniform lossless dielectric (μ, ε). A TEM mode is propagated 
along this line. Section 8.1 applies.

(a) Show that the time-averaged power flow along the line is P=√μ
ϵ
π a2∣H0∣

2 ln(ba ) where H0 is the 

peak value of the azimuthal magnetic field at the surface of the inner conductor. 

(b) Show that the transmitted power is attenuated along the line as

P (z )=P0 e
−2γ z where γ= 1

2σδ √ ϵ
μ

(1
a
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b)

ln(ba)
(c) The characteristic impedance Z0 of the line is defined as the ratio of the voltage between the 
cylinders to the axial current flowing in one of them at any position z. Show that for this line:

Z0=
1

2π √μ
ϵ

ln(ba)
(d) Show that the series resistance and inductance per unit length of the line are:

R= 1
2πσδ(1

a
+1
b) and L=

μ
2π

ln(ba )+μcδ
4π (1

a
+1
b)

where μc is the permeability of the conductor. The correction to the inductance comes from the 
penetration of the flux into the conductors by a distance of order δ.

SOLUTION:
(a) By definition a TEM mode is a singe-frequency wave component with both the electric field and 
magnetic field transverse to the direction of propagation, which is the waveguide's axis. As described in 
the book, this fact reduces the problem to a two-dimensional pseudo-static problem and ensures the 
free-space relation B=√μ ϵ ẑ×E still holds. It should be clear from the symmetry of this problem and 
its static nature that the electric fields will point in the radial direction and the magnetic field will point 
in the azimuthal direction. Additionally, they will both be constant in the azimuthal direction. The inner 
conductor has some uniform total charge per unit length λ. Draw a cylindrical Gaussian surface around 

b
a



the inner conductor and apply Gauss' law to find:

E= λ
2πϵρ

ρ̂

Using the relation above, the magnetic field is therefore:

B=√μ ϵ λ
2πϵρ

ϕ̂

As directed by the problem description, we set the peak magnetic field at the surface of the inner 
conductor at a known value H0. 

H (ρ=a )=H 0=
1

√μ ϵ
λ

2π a

Solving for the total charge per into length, we find λ=2πa H 0 √μ ϵ so that the fields become:

E=√μ
ϵ
H 0
a
ρ

ρ̂ and B=μ H 0
a
ρ

ϕ̂

This is the solution to the static problem. The solution to the waveguide problem is therefore:

E=√μ
ϵ
H0( z)

a
ρ

ρ̂ei k z−iωt and B=μ H 0(z )
a
ρ

ϕ̂ e i k z−iω t

Note that we have only the problem so far for a general two-dimensional slice at some location z. In 
general, H0 can depend on z, and indeed it must because of the attenuation arising from non-infinite 
conductivity. 

The energy flux is therefore:

S=E×H

S= 1
μ [√μ

ϵ ∣H 0(z )∣
a
ρ

ρ̂ cos(k z−ω t+Arg (H 0))]×[μ∣H 0( z)∣
a
ρ

ϕ̂ cos (k z−ω t+Arg (H 0))]
S=√μ

ϵ∣H 0(z )∣
2 a2

ρ2 cos2(k z−ω t+Arg (H 0)) ẑ

The time-averaged power flux is:

<S >=1
2 √μ

ϵ ∣H 0( z)∣
2 a2

ρ2 ẑ

The total power is therefore:



P=∫A
ẑ⋅< S > da

P=∫
0

2π

∫
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ϵ
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P=√μ
ϵ
π a2∣H0∣

2 ln(ba )
Note that the total power flow does not seem to depend on the conductivity or skin depth, which is 
unexpected. In fact, P does depend on the conductor's properties, but this dependence is hidden with 
H0. 

(b) Although power is flowing down the waveguide in the fields, some of the power is also flowing 
into the conductor and being lost to heat because of the non-infinite conductivity. As a result, the 
traveling wave dies down as is travels because it looses energy to the conducting material. Within the 
assumptions of a good conductor as detailed in the book in Section 8.1, the power lost is:

d P
d a

=1
4
μcωδ∣H||∣

2 where μc is the permeability, and δ the skin depth of the conductor

The area element in this equation is a patch on the conductor's surface. Let us factor out the azimuthal 
part of this area element and integrate over it explicitly:

d P loss

d z
=1

4
μcωδ∫

0

2π

∣H ||∣
2ρd ϕ

There are two boundaries, so that the total power loss is

d P loss

d z
=π

2
μcωδ[∣H||(a)∣

2a+∣H ||(b)∣
2b]

We know the magnetic field from part a and can insert it now:

d P loss

d z
= π

σ δ
∣H 0∣

2a[1+a
b ]

This is the rate at which energy enters the conductors and gets absorbed and is therefore the negative of 

the rate at which the power propagating down the waveguide decreases: d P
d z

=−
d Ploss

d z

The more power there is available, the quicker it is lost. Assume a linear relationship between the 
power available and how fast its lost, with the proportionality constant being (2γ):

− d P
dz

=2 γ P



The solution to this equation is: P (z )=P0 e
−2γ z

The guided wave is therefore exponentially decaying due to the power loss. The characteristic loss 
distance can be found:

γ=− 1
2P

d P
dz

γ= 1
2P

d P loss

dz

γ= 1

2[√μ
ϵ
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2 ln(ba)] [

π
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(c) The characteristic impedance Z0 of the line is defined as the ratio of the voltage between the 
cylinders to the axial current flowing in one of them at any position z.

Z0=
∣ΔΦ∣
I a

Z0=
∫
a

b

E⋅ρ̂d ρ

I a

Z0=√μ
ϵ
H 0a

∫
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ρ
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1
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For a good conductor, the current flowing within the skin depth in from the surface can be treated as an 
effective current density on the surface because the skin depth is so small:

K eff=n×H||



K eff=ρ̂×[H 0
a
ρ

ϕ̂]
ρ=a

K eff=H 0 ẑ

We find the total current by integrating the current density over the circumference of the cylinder:

I a=2πa H 0

Inserting this into the equation above, we find:

Z0=
1

2π √μ
ϵ

ln(ba)
(d) The series resistance and inductance per unit length of the line can now be computed. For the total 
power dP lost after the wave has traversed a distance of the waveguide dz, that little stretch of 
waveguide can be thought of as a circuit element with resistance. Joule heating in an Ohmic circuit 
element obeys the law:

P loss= I rms
2 R

We have to be careful because the current Irms in this equation is the root-mean-square current, and we 
have been dealing with peak values up until now. But for a harmonic wave, they are trivially related. 
The rms current is just 1/√2 times the peak power for a harmonic wave: 

P loss=
1
2
I 2R

For our incremental circuit element this becomes:

d P loss=
1
2
I 2d R

Divide both sides by the incremental length:

d P loss

d z
=1

2
I 2 d R
d z

In accordance with the problem description, redefine R not as the total resistance, but as the resistance 

per unit length: R→ d R
d z :

d P loss

d z
=1

2
I 2R

R= 2
I 2

d P loss

d z
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(2π a H 0)
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The self-inductance can be thought us as a device's ability to store energy in its magnetic fields and is 
defined as:

W=1
2
L I rms

2 where W is the total energy in the magnetic fields

As done above, we convert the rms current to the peak current:

W=1
4
L I 2

L= 4
I 2W

We are only seeking the inductance per unit length, so we only need to find the energy in one two-
dimensional slice. There are three separate regions, the inner conductor, the outer conductor, and the 
space between them. Each of them contributes to storing energy in the magnetic field.

L= 4
I 2 [W in+W mid+W out ]
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The inner and outer fields just die off exponentially into the conductors (radially) according to the skin 

depth. Be careful to remember that the field at the surface of the outer conductor is: H (ρ=b)=a
b
H 0

L=2π
I 2 ∣H 0∣

2[μc∫0
a
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ρ
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L=2π
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a
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The skin depth is small compared to the radius of the inner conductor, so the last term goes away, 
leaving:

L= μ
2π

ln(ba )+μcδ
4π (1

a
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b)


