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PROBLEM:
Consider the electric and magnetic fields in the surface region of an excellent conductor in the 
approximation of Section 8.1, where the skin depth is very small compared to the radii of curvature of 
the surface or the scale of significant spatial variation of the fields just outside.

(a) For a single-frequency component, show that the magnetic field H and the current density J are 
such that f, the time-averaged force per unit area at the surface from the conduction current, is given by

f =−n
 c

4 ∣Hpar∣
2

where Hpar is the peak parallel component of the magnetic field at the surface, μc is the magnetic 
permeability of the conductor, and n is the outward normal at the surface.

(b) If the magnetic permeability μ  outside the surface is different from μc, is there an additional force 
per unit area? What about electric forces?

(c) Assume that the fields are a superposition of different frequencies (all high enough that the 
approximations still hold). Show that the time-averaged force takes the same form as in part with |Hpar|2 

replaced by 2<|Hpar|2> where the angle brackets <...> mean time average.

SOLUTION:
(a) The idea is that the an electrodynamic field outside a conductor induces a current in the conductor, 
and the current then feels a force when interacting with the magnetic field of the electrodynamic 
disturbance. Force can be thought of as a change in momentum or change in mechanical energy. When 
a wave strikes a good conductor, the conductor absorbs some of the energy and feels a force as a result. 
As discussed previously, the force F felt on a current J in a magnetic field B is:

F=∫ J×B d 3 x

If we want to know the force per unit area on a surface f, we drop two of the dimensions in the integral

f =∫J×B d x

Let us get this in terms of the H field inside the conductor 

f = c∫ J×H d x

Use Ohm's Law J = σE



f = c∫E×H d x

It becomes obvious that the integrand is the Poynting vector. The force arises from the fact that energy 
flows into the conductor. We care about the time-averaged force, so that

f = c∫< E×H > d x

Inside a good conductor, we found the fields to be

Hc=H x=0 e i x/ − t e− x/ and Ec=  c


n×H x=0e i x /7 /4−t e−x / 

Plugging these in, being careful to only keep only the real part:

f = c∫<[ c


n×H x=0cos  x /7/ 4− t e−x/ ]×[H x=0 cos x /− t e− x / ]>d x

Realizing that n×H x=0×Hx=0=−n∣H x=0∣
2

f =−nc   c
 ∣H x=0∣

2∫ e−2 x /  < cos x /7/4− t cos x /− t > d x

Use a trigonometry addition formula to move the constant out of the cosine

f =−nc  c
2 ∣H x=0∣

2∫ e−2 x /  < cos x /− t sin x /− t cos x /− t > d x

The time average of cos2(A) is something we have already found to be ½. The time average of 
sin(A)cos(A) is the time average of sin(2A)/2 which is obviously 0 because the sine spends just as much 
time positive as negative. Also recognizing the skin depth =2/ c , this becomes:

f =−nc
1

2 ∣H x=0∣
2∫e−2 x/ d x

f =−nc
1
4∣H x=0∣

2

(b) If the magnetic permeability μ  outside the surface is different from μc, is there an additional force 
per unit area? What about electric forces?

Yes, there is an additional force. Part of the wave is reflected. A wave carries momentum and when it is 
reflected it changes momentum. A change in momentum is equivalent to a force being exerted. So the 
radiation outside the conductor and the conductor cause a force on each other due to this reflection. 
This is known as radiation pressure. The way to calculate radiation pressures is using the Maxwell 
stress tensor. Let us assume a transverse plane wave at normal incidence, for which the Maxwell stress 



tensor reduces to:

f =n S xx=n[0∣E x∣
2 1

 ∣Bx∣
2−1

2 0∣E∣21

∣B∣2]

f =n[0∣E x∣
2 1

 ∣B x∣
2−1

2 0∣E x∣
20∣E t∣

2 1
 ∣B x∣

21
∣Bt∣

2]
The direction x is normal and into the conductor. For a transverse plane wave, there is no component of 
the fields in the direction of propagation, so that Ex = 0 and Bx = 0. For the approximations of this 
section, just outside the conductor the electric field can only be normal to the conductor's surface. This 
means that the transverse electric field must also be zero Et = 0.

f =−n 1
2 ∣Bt∣

2

Let us get this in terms of H and note that the transverse component is what we meant by the 
component parallel to the conductor's surface.

f =−n 1
2

∣Hpar∣
2

If we time average this we get the time-averaged force in terms of one half of the peak value.

f =−n 1
4

∣Hx=0∣
2

Note that there is no electric force due to the radiation pressure.

Let us find the electric force due to the induced sources:

F=∫E d 3 x

For fields varying harmonically in time, the continuity equation becomes: ρ= i
ω ∇⋅J  

Under the approximations of this section, the current points entirely in a direction parallel to the 
conductor's surface and varies spatially entirely in the direction perpendicular to the surface. This 
means that it has zero divergence. As a result there is no induced charge and no electric force.

(c) Assume that the fields are a superposition of different frequencies (all high enough that the 
approximations still hold). Show that the time-averaged force takes the same form as in part with |Hpar|2 

replaced by 2<|Hpar|2> where the angle brackets <...> mean time average.

With many frequencies involved, the time averaging step does not necessarily equate to one half times 
the peak value as it did for the single-frequency case. Without knowing the detailed frequencies 
involved, the best we can do is just leave the time-average unevaluated. In a sense, you just start with 
our end answer to part a and you reverse the time-averaging step to get the general form. Because the 



time-averaging of the single frequency case evaluated to half of the peak value, we just multiply by 2 
and by the angle brackets back to get back to the general case.


