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PROBLEM:
A plane-polarized electromagnetic wave of frequency ω in free space is incident normally on the flat 
surface of a non-permeable medium of conductivity σ and dielectric constant ε.

(a) Calculate the amplitude and phase of the reflected wave relative to the incident wave for arbitrary  σ 
and ε.

(b) Discuss the limiting case of a very poor and a very good conductor, and show that for a good 
conductor the reflection coefficient (ratio of reflected to incident intensity) is approximately 

R≈1−2 
c



where δ is the skin depth.

SOLUTION:
(a) If we set up the problem in the usual way with the incident wave E traveling in the positive z 
direction, the transmitted wave E' traveling in the positive z direction, and the reflected wave E'' 
traveling in the negative z direction, we get from the boundary conditions:
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We can use both of these to solve for the reflected wave in terms of the incident wave:
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The wave number in free space is just k=
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The wave number in the other material obeys: k '=0 

For a conducting material we can use =i 
 so that we have
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Plugging these in above leads to:
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The problem asks us to explicitly expand this in terms of amplitude and phase. The amplitude of a 
complex number is defined as ∣z∣=z * z so that we have
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The phase of a complex number is Arg  z =tan−1−i z−z *
zz *
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(b) Discuss the limiting case of a very poor and a very good conductor, and show that for a good 
conductor the reflection coefficient (ratio of reflected to incident intensity) is approximately 

R≈1−2 
c



where δ is the skin depth.

For a very poor conductor σ << ε0ω which means the same as  σ/ε0ω << 1. This leads to:
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Now recognize:

 ℑ xi y=ℑx2 y21 /4e
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If y << x then tan−1 y / x= y / x and sin 1
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y / x so that
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We must be careful because the arctan leads to some ambiguity of what quadrant the phase should be 
in. We know from physical arguments that the phase difference should be π for a perfect dielectric, so 
that our answer should reduce to π for σ→0. The answer must be in the third quadrant:
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For a very good conductor σ >> ε0ω
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after dropping small terms



Use the binomial expansion 1x=11 /2x... on top and bottom and drop all small terms
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We can now calculate the reflection coefficient:
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Drop the smallest term
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The phase for a good conductor can also be found:

Arg E0 ''
E0 =tan−1 2 

0


0 
−1 

Drop the 1 in the denominator because it is much smaller:
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