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PROBLEM:
(a) Starting from the force equation (5.12) and the fact that a magnetization M inside a volume V 
bounded by a surface S is equivalent to a volume current density J M =(∇×M) and a surface current 
density (M×n) , show that in the absence of macroscopic conduction currents the total magnetic force 
on a body can be written

F=−∫V
(∇⋅M)Be d 3 x+∫S

(M⋅n)Be da

where Be is the applied magnetic induction (not including that of the body in question). The force is 
now expressed in terms of the effective charge densities ρM and σM. If the distribution of magnetization 
is not discontinuous, the surface can be at infinity and the force given by just the volume integral.

(b) A sphere of radius R with uniform magnetization has its center at the origin of coordinates and its 
direction of magnetization making spherical angles θ0, ϕ0 . If the external magnetic field is the same as 
in Problem 5.11, use the expression of part a to evaluate the components of the force acting on the 
sphere.

SOLUTION:
(a)  Starting with the general force expression:

F=∫ J tot×B d 3 x

In the absence of macroscopic conduction currents (free currents), the only current present is the 
magnetization current JM. In this case, there is only an external field Be and an object with a material 
response and/or original permanent magnetization, both described by the magnetization current.

F=∫ JM×Be d 3 x

Consider that the object occupies some finite volume V, so that outside V, the material response, and 
therefore the magnetization and magnetization current, are zero. Also, the surface S that bounds the 
object of volume V may have a discontinuity where we jump from object to not object. That gives rise 
to the possibility of a surface magnetization current KM that can explicitly broken away from the total 
integral.

F=∫V
JM ×B e d 3 x+∮S

K M ×Be da

Now plug in the representation of the currents in terms of magnetization, and switch the order of the 
cross products:



F=−∫V
Be×(∇×M)d 3 x−∮S

Be×(M×n)da

Recall the vector identity:

∇(a⋅b)=(a⋅∇)b+(b⋅∇)a+a×(∇×b)+b×(∇×a )

Arrange and label in an intuitive way to find:

Be×(∇×M)=∇(M⋅Be )−(M⋅∇)Be−(Be⋅∇)M−M×(∇×Be)

In view of the relation ∇×Be=μ0 Je and the fact that the external currents Je producing the external 
field are by definition not found in the volume of integration, we have ∇×Be=0 leading to:

Be×(∇×M)=∇(M⋅Be )−(M⋅∇)Be−(Be⋅∇)M

Plugging this in the force equation we have:

F=−∫V
∇ (M⋅Be)d 3 x+∫V

(M⋅∇)Be d 3 x+∫V
(Be⋅∇)M d 3 x−∮S

Be×(M×n)da

Also use an identity on the second integral: a×(b×c )=(a⋅c)b−(a⋅b)c which becomes

Be×(M×n)=(Be⋅n)M−(Be⋅M)n

so that we have:

F=−∫V
∇ (M⋅Be)d 3 x+∫V

(M⋅∇)Be d 3 x+∫V
(Be⋅∇)M d 3 x

−∮S
(Be⋅n)M da+∮S

(Be⋅M )n da

Use the divergence theorem on the first integral to get it into a surface integral and we find it cancels 
the last term, leading to: 

F=∫V
(M⋅∇)Be d 3 x+∫V

(Be⋅∇)M d 3 x−∮S
(Be⋅n)M da

Using an integration by parts, you can show generally that:

∫V
(a⋅∇)b dV =−∫V

(∇⋅a)b dV +∫S
(n̂⋅a)b da

Apply this to both volume integrals to find:

F=−∫V
(∇⋅M)Be dV +∮S

(n̂⋅M)Be da−∫V
(∇⋅Be)M dV

In general ∇⋅Be=0 leading to:

F=−∫V
(∇⋅M)Be dV +∮S

(M⋅n)Be da



F=∫V
ρM Be dV+∮S

σM Be da  where ρM=−∇⋅M  and σM =M⋅n

We can therefore treat a magnetized object as a collection of pseudo-magnetic charges and have these 
charges experience forces in the usual way.

(b) First of all, the magnetization is uniform inside the sphere, so there is no effective magnetic volume 
charge density:

ρM =0

There is an effective magnetic surface charge density on the sphere because of the discontinuity of 
magnetization at the surface. Let as find the surface charge density:

σM=M⋅n

σM =M 0 r̂0⋅r̂

σM=M 0(cos θcosθ0+sinθsinθ0 cos ϕcos ϕ0+sinθsinθ0 sinϕsin ϕ0)

Define x0=sin θ0 cosϕ0 , y0=sin θ0sin ϕ0 , z 0=cosθ0 so that:

σM =M 0(z 0cos θ+ x0sinθcos ϕ+ y0sinθsin ϕ)

The applied magnetic field is the one from 5.11:

B=B0 [(1+β y ) î+(1+β x) ĵ ]

B=B0 [( î+ ĵ)+β r sinθ( î sinϕ+ ĵcosϕ)]

Plug all of these in the force equation found in part a:

F=∫V
ρM Be dV+∮S

σM Be da

F=∮S
σM Be da

F=∫
0

2π

∫
0

π

M 0(z0 cosθ+x0 sinθcosϕ+ y0 sinθsinϕ)B0[( î+ ĵ)+βR sinθ( î sinϕ+ ĵcos ϕ)] R2 sinθd θd ϕ

After distributing out all factors, and doing many integrals, we find:

F=M 0 B0β
4
3
π R3( y0 î+x0 ĵ) or F=M 0 B0βV (sinθ0sinϕ0 î+sinθ0 cos ϕ0 ĵ)


