
Jackson 5.15 Homework Problem Solution
Dr. Christopher S. Baird

University of Massachusetts Lowell

PROBLEM:
Consider two long, straight wires, parallel to the z axis, spaced a distance d apart and carrying currents 
I in opposite directions. Describe the magnetic field H in terms of a magnetic scalar potential ΦM, with 
H=−∇ΦM .

(a) If the wires are parallel to the z axis with positions, x = ±d/2, y = 0, show that in the limit of small 
spacing, the potential is approximately that of a two-dimensional dipole,

ΦM≈−
I d sin ϕ

2πρ
+O(d 2/ρ2)

where ρ and ϕ are the usual polar coordinates.

(b) The closely spaced wires are now centered in a hollow right circular cylinder of steel, of inner 
(outer) radius a (b) and magnetic permeability μ =  μrμ0. Determine the magnetic scalar potential in the 
three regions, 0 < ρ < a, a < ρ <  b, and ρ > b. Show that the field outside the steel cylinder is a two-
dimensional dipole field, as in part a, but with strength reduced by the factor

F=
4μrb

2

(μr+1)2b2−(μr−1)2a2

Relate your result to Problem 5.14.

(c) Assuming that μr >> 1, and b = a + t, where the thickness t << b, write down an approximate 
expression for F and determine its numerical value for μr = 200 (typical of steel at 20 G), b = 1.25 cm, 
t = 3 mm. The shielding effect is relevant for reduction of stray fields in residential and commercial 60 
Hz, 110 or 220 V wiring. The figure illustrates the shielding effect for a/b = 0.9, μr = 100.

SOLUTION:
First consider a single wire at x = 0, y = 0 carrying a current I in the positive z direction. Draw an 
Amperian loop around the wire, and due to symmetry, the field can come out.

∇×H=J

∫S
(∇×H)⋅n̂ da=∫S

J⋅n̂da

∮C
H⋅d l=I enc



H= I
2πρ

ϕ̂

Write this in terms of a scalar potential and integrate:

−∇ ΦM= I
2πρ

ϕ̂

ϕ̂ 1
ρ

∂ΦM

∂ϕ
=− I

2πρ
ϕ̂

ΦM=− I
2π

ϕ

Now shift this to x = d/2 and superpose another wire's potential at x = -d/2 with current going in the 
opposite direction.

ΦM=− I
2π

tan−1( y
x−d /2)+ I

2 π
tan−1( y

x+d /2)
ΦM=− I

2π [ tan−1( ρsin ϕ
ρ cosϕ−d /2)+ tan−1( −ρsin ϕ

ρ cosϕ+d /2)]
Use tan−1 A+tan−1B=tan−1[ A+B1−AB ]

ΦM=− I
2π

tan−1( sin ϕ dρ

1−1
4 (dρ )

2)
Expand the arctangent in a Taylor series:

tan−1 x=x− x3/3+...

ΦM=− I
2π [( sin ϕ dρ

1−1
4 (dρ )2)−( sinϕ dρ

1−1
4( dρ )2)

3

/3+...]
When d << ρ, all higher powers of d/ρ become negligible, leaving:

ΦM=−
I d sin ϕ

2πρ



(b) The closely spaced wires are now centered in a hollow right circular cylinder of steel, of inner 
(outer) radius a (b) and magnetic permeability μ =  μrμ0. Determine the magnetic scalar potential in the 
three regions, 0 < ρ < a, a < ρ <  b, and ρ > b. Show that the field outside the steel cylinder is a two-
dimensional dipole field, as in part a, but with strength reduced by the factor

F=
4μrb

2

(μr+1)2b2−(μr−1)2a2

Relate your result to Problem 5.14.

In all regions, except near the origin, there is no free current and the material is linear and uniform. 
This means that the magnetic scalar potential in each region is the solution to Laplace's equations. We 
already know that the solution to the Laplace equation in polar coordinates is powers of ρ times sine 
functions of different arguments. Due to orthogonality therefore, only the m = 1 terms survive.

ΦM , 1=
I d
2π

sin ϕ[− 1
ρ
+Aρ] , ΦM , 2=

I d
2π

sin ϕ[B 1
ρ
+Cρ] , ΦM , 3=

I d
2π

sin ϕ[D 1
ρ ]

where region 1 is the inner hollow core, region 2 is the steel, and region 3 is external space.

H=−∇ ΦM

H=−ρ̂
∂ΦM

∂ρ
−ϕ̂ 1

ρ
∂ΦM

∂ϕ

H1=ρ̂( I d
2π

sin ϕ[− 1
ρ2 −A])+ϕ̂( I d

2π
cosϕ[ 1

ρ2 −A])
H 2=ρ̂( I d

2π
sinϕ[B 1

ρ2−C ])+ϕ̂( I d
2π

cosϕ[−B 1
ρ2 −C ])

H3=ρ̂( I d
2π

sinϕ[D 1
ρ2 ])+ϕ̂( I d

2π
cos ϕ[−D 1

ρ2 ])
The boundary conditions that need to be satisfied are continuous tangential H fields and continuous 
normal B fields at each boundary.

ϕ̂⋅H1=ϕ̂⋅H2  at ρ=a , ϕ̂⋅H2=ϕ̂⋅H3  at ρ=b , μ0ρ̂⋅H1=μρ̂⋅H2  at ρ=a , μρ̂⋅H 2=μ0 ρ̂⋅H3  at ρ=b

Aa2−B−C a2−1=0  ,  B+Cb2−D=0  ,  1+Aa2+μr B−μrC a
2=0  ,  μr B−μrC b

2−D=0

We have four equations and four unknowns, so we can find a unique solution.

A= −F
2μra

2b2 ((μr+1)b2+(μr−1)a2)+ 1
a2



B=− F
2μr

(μr+1)

C=−(μr−1) F
2μrb

2

D=−F

where F=
4μrb

2

(μr+1)2b2−(μr−1)2a2

so that finally:

ΦM , 1=− I d
2πa

sin ϕ[ aρ−
ρ
a
+

ρ
a
( F

2μrb
2 ((μr+1)b2+(μr−1)a2))]  

ΦM , 2=− I d F
4 πbμr

sinϕ[ (μr+1) b
ρ
+(μr−1)

ρ
b ]

ΦM , 3=F [−I d2πρ
sin ϕ]           where F=

4μrb
2

(μr+1)2b2−(μr−1)2a2

There are several interesting points to these results. First of all, the potential in the outer region is just 
the potential of the original two-dimensional dipole, weakened in strength by a factor F. Inspection of 
F reveals that this effective dipole pattern in the outer region becomes weaker for thicker steel shells 
(b/a larger) and for shells with higher permeability. In the limit of infinite permeability of the shell, 
F = 0, meaning there are no magnetic fields outside the shell. The shell become a perfect magnetic 
shield. 

The next interesting point is that inside the steel and in the hollow region, the field is an effective 
dipole field plus a uniform field. 

(c) Assuming that μr >> 1, and b = a + t, where the thickness t << b, write down an approximate 
expression for F and determine its numerical value for μr = 200 (typical of steel at 20 G), b = 1.25 cm, 
t = 3 mm. The shielding effect is relevant for reduction of stray fields in residential and commercial 60 
Hz, 110 or 220 V wiring. The figure illustrates the shielding effect for a/b = 0.9,  μr = 100.

With a = b – t we have:

F=
4μrb

2

(μr+1)2b2−(μr−1)2a2

F=
4μr

(μr+1)2−(μr−1)2(ab )
2



F=
4μr

(μr+1)2−(μr−1)2(1−2( tb )+( tb)
2)

F= 1

1+
(μr−1)2

4μr [2( tb)−( tb)
2]

When t << b, t/b << 1, so that the last term can be dropped

F≈ 1

1+
(μr−1)2

2μr ( tb)
If  μr >> 1:

F≈ 1

1+
μr t
2b

F≈ 1

1+(200)(0.3cm)
2(1.25cm)

F≈0.04 (Note that using the expression without any approximations, F = 0.0456)


