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PROBLEM:
A long, hollow, right circular cylinder of inner (outer) radius a (b), and of relative permeability μr, is 
placed in a region of initially uniform magnetic-flux density B0 at right angles to the field. Find the flux 
density at all points in space, and sketch the logarithm of the ratio of the magnitudes of B on the 
cylinder axis to B0 as a function of log10 μr for a2/b2 = 0.5, 0.1. Neglect end effects.

SOLUTION:
Align the axis of the cylinder with the z-axis and orient the original field to point in the positive x 
direction: B∞=B0 x . Because the cylinder is long, we can neglect end effects and the problem 
becomes two-dimensional.

Separate the problem into three regions, In each region we have linear materials and no currents, so we 
can solve for the magnetic potential: (there are bound currents at the interfaces, but they only come into 
play when we apply boundary conditions if we split the problem into three regions)

∇2 M=0 where B=−∇ M and the potential far away becomes M=−B0 cos

This is simply the Laplace equation in polar coordinates, for which we already know the general 
solution to be:

M  ,=∑
m=1

∞

ammbm−mAm e i mBm e−i m

Outside the cylinder, apply the boundary condition at large ρ

−B0 cos=∑
m=1

∞

amm Am ei mBm e−i m

Due to orthogonality:

A1=B1=−B0/ 2 a1 and am=0 for m > 1

So that 

M ,out  ,=−B0 cos∑
m=1

∞

−m  Am ei mBm e−i m

In the middle of the cylinder, b > ρ > a, we cannot apply any boundary conditions right away:



M ,mid  ,=∑
m=1

∞

cmm−mCm ei mDm e−i m

Inside the hollow center of the cylinder, ρ < a, the solution must be finite at the origin so that all 
negative m terms must go away.

M ,in ,=∑
m=1

∞

m Fm e i mGm e−i m

There are no free currents and all materials are linear, so the boundary conditions become:

Bout−Bmid⋅=0  and Bout−
1
r

Bmid⋅=0 at ρ = b

Bmid−Bin ⋅=0  and  1
 r

Bmid−B in⋅=0 at ρ = a

Substituting in our definition of the B field in terms of the scalar potential, these boundary conditions 
become:

∂M ,out

∂
=

∂M ,mid

∂
and

∂M ,out

∂
= 1

 r

∂M ,mid

∂
at ρ = b

∂M ,mid

∂
=

∂M , in

∂
and 1

r

∂ M ,mid

∂
=

∂M ,in

∂
at ρ = a

Applying the first boundary condition gives:

−B0 cos∑
m=1

∞

−mb−m−1 Am e i mBm e−i m=∑
m=1

∞

cm m bm−1−mb−m−1Cm e i mDm e−i m

A1/b
2c1−b−2C1=−B0 /2 and B1 = A1, D1 = C1

Amcmb2m−1Cm=0 for m > 1

Bmcm b2 m−1 Dm=0 for m > 1

Applying the second boundary condition gives:

B0 b sin∑
m=1

∞

b−m Am i m ei m−i m Bm e−i m= 1
 r

∑
m=1

∞

cm bmb−mCm i m ei m−i m Dm e−i m

A1/b
2− 1

r
c1b−2C1=B0/2



Am− 1
r

cm b2 m1Cm=0 for m > 1

Bm−
1
r

cm b2m1 Dm=0 for m > 1

Applying the third boundary condition gives:

∑
m=1

∞

cm m am−1−m a−m−1Cm ei mDm e−i m=∑
m=1

∞

m am−1F m e i mGm e−i m

c1−a−2C1=F 1 and F1 = G1

cm−a−2 mCm=Fm for m > 1

cm−a−2 m Dm=Gm for m > 1

Applying the last boundary condition gives:

1
r

∑
m=1

∞

cm ama−m Cm i m ei m−i m Dm e−i m=∑
m=1

∞

am Fm i m e i m−i m Gm e−i m

1
r

c1a−2C1=F 1

1
r

cma−2 mCm=F m for m > 1

1
r

cma−2 m Dm=Gm for m > 1

Now we have several coupled equations and can solve for the unknowns. Trying to solve for the m > 1 
cases, we soon find contradictory results, meaning the only possible solution is:

Am = 0, Bm = 0, cm = 0, Cm = 0, Dm = 0, Fm = 0, Gm = 0 for m > 1

All that is left is the m = 1 cases and we now solve for them:

c1=− 1
a2  1 r

1− r  F 1=−2 B0
b2

a2

 r

b2

a2 1 r
2−1− r

2
F1 = G1, B1 = A1, D1 = C1



C1=B0
 r1− rb

2

b2

a2 1 r
2−1− r

2 A1=−B0/2b21− r
2

b2

a2−1

b2

a2 1 r
2−1− r

2

The final solution is then:

M ,out  ,=−B0 cos−
1− r

2b2−a2
2 r a b

S  b
B0b cos

M ,mid  ,=−S[1 r

a
−1− r

a
]B0 b cos                 where S=

2 r a b
b21 r

2−a21− r
2

M ,in ,=− b
a

2 S B0cos

Finally, using B=−∇M :

B=−
∂ M

∂
−  1


d  M

d 

Bout=B0 x−
1− r

2b2−a2
2r ab

S b2

2 B0[ x2  sin]

Bmid=S B0
b
a

1 r xS B01− r
ab
2 [ x2  sin]       where S=

2r ab
b21 r

2−a21− r
2

Bin=
b
a

2 S B0 x

We can sketch a sample case to get an idea of what this solution looks like. Choose b = 2a and a 
paramagnetic material, μr = 3. The fields for this sample case become:

Bout=B0 x8
5 a


2

B0[ x2 sin]

Bmid=
8
5

B0 x−4
5

B0 a


2

[ x2  sin]

Bin=
4
5

B0 x  



We see that a hollow paramagnetic pipe 
(and likewise ferromagnetic, like a steel pipe), tends to attract external field lines,
but then shields its hollow core from the fields.

We can sketch the magnitude of the B field inside the hollow core to get an idea of the shielding:

Bin

B0
=

4 r

1r 
2−a2

b2 1− r
2

This is a log-log plot, so “-1” on the y scale means the field inside the pipe's core is 1/10th the strength 
of the externally applied field, “-2” means 1/100th the strength, and so on. We see that at μr = 1000, 
common for some ferromagnets, the field has already been shielded to 1/100th of its original strength. 
The log-log plot also reveals that the behavior asymptotically approaches B∝1/ r .
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