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PROBLEM:

A long, hollow, right circular cylinder of inner (outer) radius a (b), and of relative permeability u,, is
placed in a region of initially uniform magnetic-flux density B, at right angles to the field. Find the flux
density at all points in space, and sketch the logarithm of the ratio of the magnitudes of B on the
cylinder axis to By as a function of log;o , for a*/b* = 0.5, 0.1. Neglect end effects.

SOLUTION:

Align the axis of the cylinder with the z-axis and orient the original field to point in the positive x
direction: B(p—o)=BX . Because the cylinder is long, we can neglect end effects and the problem
becomes two-dimensional.

Separate the problem into three regions, In each region we have linear materials and no currents, so we
can solve for the magnetic potential: (there are bound currents at the interfaces, but they only come into
play when we apply boundary conditions if we split the problem into three regions)

V>¥,,=0 where B=—V ¥, and the potential far away becomes ¥ ,,=— B, p cos ¢

This is simply the Laplace equation in polar coordinates, for which we already know the general
solution to be:

u(p,d)= Z (a ,pm+bmp_m)(Am e+ Bme_im¢)
Outside the cylinder, apply the boundary condition at large p

—B, pcosd):i amp"’(Ameim¢+Bme7'-m¢)

m=1
Due to orthogonality:
A,=B=—B,/(2a,) and a,=0 form>1

So that

Yy olp. b)=—B,pcosp+, p (4, " +B,e "

m=1

In the middle of the cylinder, b > p > a, we cannot apply any boundary conditions right away:



‘I’M mid (p,d :i_l ¢, p "o ™) (Cmeimd)‘FDme_imd’)

Inside the hollow center of the cylinder, p < a, the solution must be finite at the origin so that all
negative m terms must go away.

Mm p (I) Zp ( ; imd>+Gmefimd>

m=1

There are no free currents and all materials are linear, so the boundary conditions become:
A 1 A
(Bout_Bmid)'pZO and Bout_u_Bmid ¢:0 atp:b

A 1 A
(B~ By,) p=0 and (H_Bmid_Bm)'d):O atp=a
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Substituting in our definition of the B field in terms of the scalar potential, these boundary conditions
become:

a\I/M,out:a\IIM,micl and a\I]M out La\I’M,mid athb
op op 0 M, O
OV mia OV 1 0Y ) s 0¥y ¢
— = — and — —= — atp=
op op H,  O0¢ oo p=a
Applying the first boundary condition gives:
—-B Cosc|>+z m)b " 1(Amei"“b—i-Bme_imd’):Z: (c,m bm_l—mb_m_l)(Cmeimd)-l- D,e ™"
m=1 m=1

A1/b2+(01—b_2)C1:—BO/2 and Bl =A1, D1 = C1

A,+(c,b’"=1)C,=0| form>1

B,+(c,b""—1)D, =0| for m> 1

Applying the second boundary condition gives:

Bobsin¢+i bim(Amimeimd’—imBme*imd’) Hii c,b"+b") (Cmimeimd’—imDmefimd’
m=1 =

Al/bz—ui(cl+b2)cl=30/z
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A —i(cmbz’"ﬂ)cmzo form> 1

Iz

Bm—L(cmbz’"H)Dm:O form> 1

r

Applying the third boundary condition gives:

<Cl_a72)C1:F1 al’ld F] = Gl

(¢,—a*")C,=F, | form>1

(¢,—a*")D, =G, | form>1

Applying the last boundary condition gives:
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Now we have several coupled equations and can solve for the unknowns. Trying to solve for the m > 1
cases, we soon find contradictory results, meaning the only possible solution is:

4,=0,8,=0,¢,=0,C,=0,D,=0,F,=0,G,=0form>1

All that is left is the m = 1 cases and we now solve for them:

o b b,
2b 5 ) F1=G1’Bl=A1,D1=C1
= (1+p,) =(1-p,)

I+p,
I—p,

F,=—2B,

C\=——
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C—B u(1—p,)b’ ——1
N e (1 y A ==B 26 (1-p))
JERR H Z (e, = (1=p, )
a

The final solution is then:

(1-p,)(6°=a’) (b
¥ (P, d)=—B,pcosd— 20 ab S| |Bobeosd
2u.ab
Y mia(pod)==8| (1+p,) E—=(1-p,) 2 |B,b S= r
a0, P) n )= “’)p] o0 €0S Where P (1+p, )’ =a’(1—p,)’

b
\I/M,in(p) d)):_ngBOpCOSCI)

Finally, using B=—V'Y, :

JO0Y,, ~1dY,

B=— -

op p do

N S [ I 0 P
B, =B,Xx— 2wab S ? B,[%+2¢sind]

b N abi. ~a . 2u.ab
B, =SB,—(1+u,)%+S B,(1—p,)—[&+2dsin here S= -
d Oa( ) o ) pz[ $sind]|  where P +p)—a(1-p )
B =225B,%
a

We can sketch a sample case to get an idea of what this solution looks like. Choose b =2a and a
paramagnetic material, 4. = 3. The fields for this sample case become:

2
Boszoi+§(%) Bo[X+2psind] v
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Bmidngoﬁ—%Bo(ﬁ [£+2¢sind]
p
Bm:%Boﬁ



We see that a hollow paramagnetic pipe
(and likewise ferromagnetic, like a steel pipe), tends to attract external field lines,
but then shields its hollow core from the fields.

We can sketch the magnitude of the B field inside the hollow core to get an idea of the shielding:

B field within the hollow section of a magnetic pipe
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This is a log-log plot, so “-1” on the y scale means the field inside the pipe's core is 1/10™ the strength
of the externally applied field, “-2” means 1/100™ the strength, and so on. We see that at . = 1000,
common for some ferromagnets, the field has already been shielded to 1/100™ of its original strength.
The log-log plot also reveals that the behavior asymptotically approaches Bocl/u, .



