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PROBLEM:
A localized distribution of charge has a charge density

ρ(r)= 1
64π

r 2e−r sin2θ

(a) Make a multipole expansion of the potential due to this charge density and determine all the non-
vanishing multipole moments. Write down the potential at large distances as a finite expansion in 
Legendre polynomials.

(b) Determine the potential explicitly at any point in space and show the solution near the origin, 
correct to r2 inclusive,

Φ(r)≈ 1
4πϵ0

[ 1
4
−

r 2

120
P2(cosθ)]

(c) If there exists at the origin a nucleus with a quadrupole moment Q = 10-28 m2, determine the 
magnitude of the interaction energy, assuming that the unit of charge in ρ(r) above is the electronic 
charge and the unit of length is the hydrogen Bohr radius a0=4πϵ0ℏ

2/m e2=0.529×10−10 m . Express 
your answer as a frequency by dividing by Plank's constant h.
The charge density in this problem is that for the m=±1 states of the 2p level in hydrogen, while the 
quadrupole interaction is of the same order as found in molecules.

SOLUTION:
(a) The general solution in terms of a multipole expansion of a localized distribution in spherical 
harmonics is:
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For cases where there is azimuthal symmetry in the charge distribution, this reduces to:
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Let us now plug in the charge density for this case:

q l=
1

64π
2π√ 2 l+1

4π ∫
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P l( x ')(1− x '2)dx '∫
0
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r 'l+4e−r ' dr '

Use the identity easily found in an integral table: ∫
0

∞

xn e− x dx=n ! if n is a positive integer, which is the 

case here.
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We can use the identity: x '2=2
3

P2(x ')+1
3

P0(x ') which is easily derived from the definition of the two 

specific Legendre polynomials.
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Due to orthogonality, every ql is zero except when l = 0 or l = 2:

q0=√ 1
4π

q2=−3√ 5
π

We can now find the final solution to the potential:

Φ(r ,θ ,ϕ)= 1
4πϵ0 [√4πq0

1
r
+√ π5 q2

3cos2θ−1
r 3 ]

Φ(r ,θ ,ϕ)= 1
4πϵ0 [ 1

r
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r3 ]
or in terms of Legendre polynomials:

Φ(r ,θ ,ϕ)= 1
4πϵ0 [ P0(cos θ)

r
−6

P2(cos θ)
r3 ]

Note that this solution is exact as long as the observation point is beyond the edge of the charge 
density. There is no “far-away” limitation to this solution because all higher order terms are zero. 
Unfortunately, in this problem, there is no clearly defined “edge” to the charge density. This solution 
becomes exact once e-r is so small so as to be negligible.



(b) The multipole expansion is only valid if the observation point is external to a local charge 
distribution. To find the potential within the charge distribution, we must use Coulomb's law:
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Expand the denominator in spherical harmonics
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Due to azimuthal symmetry, only the m = 0 terms will survive.
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Again use the identity: x '2=2
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Due to orthogonality, all terms drop out except l = 0 and l = 2:
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We must break each integral into two cases, when r' < r and r' > r
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This solution is exact and applies everywhere.
We can take the limit as e-r becomes zero to check the solution obtained using multipole moments. We 
find:

Φ(r ,θ ,ϕ)= 1
4πϵ0 [ P0(cos θ)

r
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This matches the far-away solution found using the multipole expansion.

We can also take the limit close to the origin. We must first expand the exponential into a Taylor series:

e−r=1−r1
2

r2− 1
6

r3 1
24

r 4− 1
120

r5...

After distributing out all terms, we can throw out terms r3, r4 and higher because they contribute very 
little near the origin.
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Most of these terms cancel out and the final solution close to the origin reduces to:
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(c) We are to assume that the charge density of the previous parts, and its associated potential, is the 
average charge distribution of a single electron bound to a hydrogen nucleus. The nucleus of is so small 
that is can be considered as contained at the origin, so that we only need to use the expression for the 
electron's potential near the origin (the last equation of part b). If we convert from units of elementary 
charge and Bohr radius lengths to SI units, the potential of the electron near the origin becomes:
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The interaction energy is the total potential energy between the interacting electron's potential and 
nucleus' charge:
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The problem does not explicitly ask for the monopole moment interaction of the nucleus. We drop the 
first term and find:

W
h
=
αc Q zz , nucl

480πa0
3 where the zero-energy fine structure constant is α= e2

4πϵ0ℏ c
≈7.3×10−3

W
h
≈1 MHz


