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PROBLEM:
A point dipole with dipole moment p is located at the point x0. From the properties of the derivative of 
a Dirac delta function, show that for calculation of the potential Φ or the energy of a dipole in an 
external field, the dipole can be described by an effective charge density

eff x=−p⋅∇ x−x0

SOLUTION:
The potential due to a dipole is:
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The potential due to a charge density is:
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so that:
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Use the relation proved earlier that
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Add to the left an integral and a Dirac delta:
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Use integration by parts
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Shrink down the integrals until it must be true at every point, so that the integrands must match.

x '=−p⋅∇ 'x '−x0

Relabel the primed variables to be unprimed:

eff x=−p⋅∇ x−x0

We can also go other way in the same manner, putting this into Coulomb's law and ending up with the 
dipole potential.

The energy of a dipole in an external field is W=[−p⋅∇  ]x=x0

The energy in general of a charge distribution in an external field isW=∫xxd x

So that:

[−p⋅∇x ]x=x0
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−∫ x−x0p⋅∇xd x=∫xx d x

Applying integration by parts:

−∫ xp⋅∇ x−x0d x=∫xxd x

Equating integrands:

eff x=−p⋅∇ x−x0


