PROBLEM:

Calculate the multipole moments ¢, of the charge distributions shown as parts a and b. Try to obtain
results for the non-vanishing moments valid for all /, but in each case find the first two sets of non-
vanishing moments at the very least.

(a) (b)

(c) For the charge distribution of the second set b) write down the multipole expansion for the potential.
Keeping only the lowest-order term in the expansion, plot the potential in the x-y plane as a function of
distance from the origin for distances greater than a.

(d) Calculate directly from Coulomb’s law the exact potential for b) in the x-y plane. Plot it as a
function of distance and compare with the result found in part c).

SOLUTION:
(a) The charge density is written down in spherical coordinates as:

p=%5 (r—a)8(cos0)[8(b)—5 (p—31/2)=8 (b—T)+5 (p—1/2)]

Plug this into the multipole moments definition and evaluate:
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This is the solution valid for all /.
Let us write out the first few multipoles explicitly to see what this means.
The monopole moment is:

900=0 because m is even

This makes sense because the total charge is zero.
The dipole moments are:
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Put these together into the Cartesian dipole moment vector:
p=p.itpjtp.k
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The quadrupole moments are:
g, ,=0
g, =0
q,0=0
q,=0
q,,=0

The problem asks us for the first two sets of non-vanishing moments, so we have to keep going.
The non-zero octupole moments are:
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(b) The charge density is written down in spherical coordinates as:

p=—1 -8(r—a)[8(cos0—1)+8 (cos0+1)]— 2q26(r)
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Plug this into the multipole moments definition and evaluate:
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Expand the spherical harmonics and try to do the integral over the azimuthal coordinate. We find that it



vanishes except for when m = 0. This makes sense because the problem has azimuthal symmetry. In the
second integral, all terms disappear except for / = 0.
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This becomes more clear if we break this into different cases, including the simplest monopoles first:
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and all higher terms can be expressed as:

20+l gd'| if m=0and = even, ¢ = 0 otherwise
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(c) For the charge distribution of the second set b) write down the multipole expansion for the potential.
Keeping only the lowest-order term in the expansion, plot the potential in the x-y plane as a function of
distance from the origin for distances greater than a.

The multipole expansion of the potential is:
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Now if » is much greater than a, then (a/r) is much less than one and (a/r) raised to higher powers is
even smaller, so that we only need to keep the first term.
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(d) Calculate directly from Coulomb’s law the exact potential for b) in the x-y plane. Plot it as a
function of distance and compare with the result found in part c).

We have three points charge and can write out an exact solution for the point charges:
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In the x-y plane this becomes:
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It becomes apparent now that the first term in the multipole expansion is a good approximation to as
close as r = 2a, but becomes inaccurate closer than that.
Dividing out the asymptotic form (a/r) lets us compare them for clearly:
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