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PROBLEM:
Calculate the multipole moments qlm of the charge distributions shown as parts a and b. Try to obtain 
results for the non-vanishing moments valid for all l, but in each case find the first two sets of non-
vanishing moments at the very least. 

(a) (b)

(c) For the charge distribution of the second set b) write down the multipole expansion for the potential. 
Keeping only the lowest-order term in the expansion, plot the potential in the x-y plane as a function of 
distance from the origin for distances greater than a. 

(d) Calculate directly from Coulomb’s law the exact potential for b) in the x-y plane. Plot it as a 
function of distance and compare with the result found in part c). 

SOLUTION:
(a) The charge density is written down in spherical coordinates as:

= q
a2  r−a cos [− −3/2− − −/2 ]

Plug this into the multipole moments definition and evaluate:

q lm=∫Y lm*  ' , 'r 'lx 'd x '

q lm=
q
a2∫Y lm*  ' , 'r 'l r '−a cos ' [ '−  '−3/2− '−  '−/2 ]d x '

q lm=q a
l∫

0

2

∫
0



Y lm
*  ' , ' cos  ' [ '−  '−3/2−  '− '−/ 2 ]sin 'd  'd '
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q lm=q a
l2 l1

4 l−m !
lm !

P l
m0∫

0

2

e−im ' [  '− '−3/ 2− '−  '−/2 ]d '

q lm=q a
l2 l1

4 l−m !
lm ! P l

m0 [1−im−−1m−1m im ]

q lm=q a
l2 l1

4 l−m !
lm ! P l

m01−−1m1−im

q lm=2q al2 l1
4 l−m!

lm! P l
m01−im if m is odd, qlm = 0 if m is even

This is the solution valid for all l. 
Let us write out the first few multipoles explicitly to see what this means.
The monopole moment is:

q00=0 because m is even

This makes sense because the total charge is zero.
The dipole moments are:

q1,−1=qa 3
2

1i 

q1,0=0

q11=q a 3
2

−1i 

Put these together into the Cartesian dipole moment vector:

p=px i  py jpz k

p=2
3 q1,−1−q11 i−i q1,−1q11 j2q10

k 

p=2q a ij 



The quadrupole moments are:

q2,−2=0

q2,−1=0

q2,0=0

q21=0

q2,2=0

The problem asks us for the first two sets of non-vanishing moments, so we have to keep going.
The non-zero octupole moments are:

q3,−3=qa
3 35

16
1−i 

q3,−1=qa
3 21

16
−1−i 

q31=q a
3 21

16
1−i 

q33=q a
3 35

16
−1−i 

(b) The charge density is written down in spherical coordinates as:

= q
2 a2 r−a [cos −1 cos1]− 2q

4 r2  r 

Plug this into the multipole moments definition and evaluate:

q lm=∫Y lm*  ' , 'r 'lx 'd x '

q lm=∫Y lm*  ' , ' r 'l[ q
2a2  r '−a [ cos '−1cos '1 ]− 2q

4 r '2
 r '] d x '

q lm=
q

2∫
0

2

∫
0



Y lm
*  ' , 'a l [cos  '−1 cos '1 ]sin 'd  'd '

− 2q
4 ∫

0

2

∫
0



∫
0

∞

Y lm
*  ' , ' r 'l r 'sin ' d r 'd  'd '

Expand the spherical harmonics and try to do the integral over the azimuthal coordinate. We find that it 



vanishes except for when m = 0. This makes sense because the problem has azimuthal symmetry. In the 
second integral, all terms disappear except for l = 0.

q lm=m ,0[qal2 l1
4

[1−1l ]− l ,0q1
 ]

This becomes more clear if we break this into different cases, including the simplest monopoles first:

q00=0

q10=q1,−1=q11=0

q20=5

qa2  q2,−2=q2,−1=q2,1=q2,2=0

q3,−3=q3,−2=q3,−1=q3,0=q3,1=q3,2=q3,3=0

q40=9

qa4

and all higher terms can be expressed as:

q lm=2 l1


q al if m = 0 and l = even, qlm = 0 otherwise

(c) For the charge distribution of the second set b) write down the multipole expansion for the potential. 
Keeping only the lowest-order term in the expansion, plot the potential in the x-y plane as a function of 
distance from the origin for distances greater than a. 

The multipole expansion of the potential is:

= 1
40

∑
l=0

∞

∑
m=−l

l 4
2 l1

q lmr
−l−1Y lm ,

= 1
40 [4

5
q20

1
r3 Y 20 ,4

9
q40

1
r5 Y 40 , ∑

l=6,even

∞ 4
2 l1

ql , 0
Y l0 ,

rl1 ]
= q

40a [ar 
3

3 cos2 −1ar 
5 1

4
35cos4 −20cos2 32 ∑

l=6, even

∞ ar 
l1

P l  ,]
Now if r is much greater than a, then (a/r) is much less than one and (a/r) raised to higher powers is 
even smaller, so that we only need to keep the first term.



= q
40a ar 

3

3cos2 −1

In the x-y plane this becomes:

= −q
40a ar 

3

We can plot the potential
 in units of (-q/4πε0a) and 
the distance in unit of a:

(d) Calculate directly from Coulomb’s law the exact potential for b) in the x-y plane. Plot it as a 
function of distance and compare with the result found in part c). 

We have three points charge and can write out an exact solution for the point charges:

= q
40

[ 1
∣ra z∣

 1
∣r−a z∣

− 2
∣r∣]

In the x-y plane this becomes:

=
2 q

40 [ 1
r 2a2 −

1
r ]

=
−q

40a [ 2
r /a−

2
r /a21 ]

It becomes apparent now that the first term in the multipole expansion is a good approximation to as 
close as r = 2a, but becomes inaccurate closer than that.
Dividing out the asymptotic form (a3/r3) lets us compare them for clearly:
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