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PROBLEM:

A hollow right circular cylinder of radius b has its axis coincident with the z axis and its ends at z=0
and z = L. The potential on the end faces is zero, while the potential on the cylindrical surface is given

as V (&, z) . Using the appropriate separation of variables in cylindrical coordinates, find a series
solution for the potential anywhere inside the cylinder.

SOLUTION:
There is no charge present, so we seek to solve the Laplace equation in cylindrical coordinates:
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Using the method of separation of variables, the general solution to this equation is:
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We seek a solution that must be valid on the full azimuthal sweep. This single-valued requirement
leads to Dy,=0, D,,=0,and v=m where m=0,1,2,3,...
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We also seek a solution that is valid along the z axis. The Neumann functions, the p™ terms, and the

In p terms blow up on this axis, so their coefficients must be set to zero to keep the solution valid. This

leads to:
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At this point, several terms can be combined:
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Apply the boundary condition ® (z=0)=0
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This leads to:
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Apply the boundary condition ® (z=L)=0
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Note that the n = 0 case cannot be included, because it corresponds to k£ = 0, which was already handled
separately and is not included in the second sum.
This leads to (using sinh (i 0)=isin(0) ):
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The Bessel functions of pure imaginary argument are defined to be modified Bessel functions:
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Apply the final boundary condition: ® (p=>5)=V (¢, z)
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This is just a two-dimensional Fourier series. Multiply both side by a negative complex exponential and
integrate:
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Use the orthogonality of the complex exponentials: f T =218 Kok
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Multiply both sides by a sine function and integrate:
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Solve for the coefficients:
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The exact same process is repeated, this time starting by multiplying by a positive complex exponential
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After inserting these coefficients, the final solution becomes:
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We can formulate this entirely in terms of real-valued parameters by expanding out the complex
exponentials to find:

_L S Z (nrtp/L) z '
®(p,0,z) I m=021:2 nzlé (m[b/L)sm(nT[L)Z[Am’”cos(mq))—i-Bm,nsm(mq))]
L 2n '
where Am,nsz V(q)',z')cos(mqf)sin(mzz )dqfdz' and
00
L 2n '
ffV )sin m(p)sin(nnz )dq)'dz'
00 L




