PROBLEM:
The surface of a hollow conducting sphere of inner radius a is divided into an even number of equal segments by a set of planes; their common line of intersection is the z axis and they are distributed uniformly in the angle ϕ. (The segments are like the skin on wedges of an apple, or the earth's surface between successive meridians of longitude.) The segments are kept at fixed potentials $\pm V$, alternately.

(a) Set up a series representation for the potential inside the sphere for the general case of $2n$ segments, and carry the calculation of the coefficients in the series far enough to determine exactly which coefficients are different from zero. For the non-vanishing terms, exhibit the coefficients as an integral over $\cos \theta$.

(b) For the special case of $n = 1$ (two hemispheres) determine explicitly the potential up to and including all terms with $l = 3$. By a coordinate transformation verify that this reduces to result (3.36) of Section 3.3.

SOLUTION:
There is no charge present, so we seek to solve Laplace's equation. In spherical coordinates this becomes:

$$\nabla^2 \Phi = 0 \rightarrow \frac{1}{r} \frac{\partial^2}{\partial r^2} (r \Phi) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} = 0$$

Using the method of separation of variables, and when the full azimuthal range needs a valid solution, the general solution is expressed in terms of the spherical harmonics Y_{lm}:

$$\Phi (r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (A_{l,m} r^l + B_{l,m} r^{-l-1}) Y_{lm} (\theta, \phi)$$

In this problem, we require a valid solution at the origin, so that we must have $B_l = 0$ to keep those terms from blowing up. The solution now becomes:

$$\Phi (r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{l,m} r^l Y_{lm} (\theta, \phi)$$

The boundary condition on the surface of the sphere is described mathematically as:
\[\Phi(r=a) = V(\phi) \quad \text{where} \quad V(\phi) = \begin{cases} +V & \text{if } \frac{2i\pi}{n} < \phi < \frac{(2i+1)\pi}{n} \\ -V & \text{if } \frac{(2i+1)\pi}{n} < \phi < \frac{(2i+2)\pi}{n} \end{cases} \quad \text{where } i \text{ is any of } 0,1,...(n-1) \]

We apply this boundary condition:

\[V(\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{l,m} a^{l} Y_{l,m}(0,\phi) \]

Multiply both sides by \(Y_{l,m}^\star(0,\phi) \) and integrate over the surface of the sphere:

\[\int_{0}^{2\pi} \int_{0}^{\pi} V(\phi) Y_{l,m}^\star(\theta,\phi) \sin \theta \, d\theta \, d\phi = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{l,m} a^{l} \int_{0}^{2\pi} \int_{0}^{\pi} Y_{l,m}^\star(\theta,\phi) Y_{l,m}(\theta,\phi) \sin \theta \, d\theta \, d\phi \]

Use the orthogonality of the spherical harmonics to pick one term from the double series:

\[\int_{0}^{2\pi} \int_{0}^{\pi} V(\phi) Y_{l,m}^\star(\theta,\phi) \sin \theta \, d\theta \, d\phi = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{l,m} a^{l} \delta_{l,l} \delta_{m,m} \]

\[\int_{0}^{2\pi} \int_{0}^{\pi} V(\phi) Y_{l,m}^\star(\theta,\phi) \sin \theta \, d\theta \, d\phi = A_{l,m} a^{l} \]

\[A_{l,m} = a^{-l} \int_{0}^{2\pi} \int_{0}^{\pi} V(\phi) Y_{l,m}^\star(\theta,\phi) \sin \theta \, d\theta \, d\phi \]

Expand the definition of the spherical harmonics:

\[A_{l,m} = a^{-l} \sqrt{\frac{2l+1}{4\pi}} \frac{(l-m)!}{(l+m)!} \int_{0}^{2\pi} V(\phi) e^{-im\phi} \, d\phi \int_{0}^{\pi} P_{l}^{m}(\cos \theta) \sin \theta \, d\theta \]

Break the integral over the azimuthal angle into a sum over \(2n \) integral pieces and plug in the explicit value of the potential on the boundary:

\[A_{l,m} = a^{-l} \sqrt{\frac{2l+1}{4\pi}} \frac{(l-m)!}{(l+m)!} \int_{0}^{\pi} P_{l}^{m}(\cos \theta) \sin \theta \, d\theta \left[\sum_{j=0}^{2n-1} \int_{j\pi/n}^{(j+1)\pi/n} V(\phi) e^{-im\phi} \, d\phi \right] \]

\[A_{l,m} = a^{-l} \sqrt{\frac{2l+1}{4\pi}} \frac{(l-m)!}{(l+m)!} \int_{0}^{\pi} P_{l}^{m}(\cos \theta) \sin \theta \, d\theta \left[\sum_{j=0}^{2n-1} \int_{2j\pi/n}^{(2j+1)\pi/n} (V) e^{-im\phi} \, d\phi + \int_{2n\pi}^{(2n+1)\pi} (V) e^{-im\phi} \, d\phi \right] \]

\[A_{l,m} = V a^{-l} \sqrt{\frac{2l+1}{4\pi}} \frac{(l-m)!}{(l+m)!} \int_{0}^{\pi} P_{l}^{m}(\cos \theta) \sin \theta \, d\theta \left[\sum_{j=0}^{n-1} \int_{2j\pi/n}^{(2j+1)\pi/n} e^{-im\phi} \, d\phi - \int_{(2n+1)\pi/n}^{(2n+2)\pi/n} e^{-im\phi} \, d\phi \right] \]
Let us call the part in brackets B_m and work it out separately:

$$B_m = \sum_{j=0}^{n-1} \left(\int_{\frac{2j\pi}{n}}^{\frac{(2j+1)\pi}{n}} e^{-im\Phi} d\Phi - \int_{\frac{(2j+2)\pi}{n}}^{\frac{(2j+3)\pi}{n}} e^{-im\Phi} d\Phi \right)$$

For $m = 0$ this reduces to:

$$B_0 = \sum_{j=0}^{n-1} \left(\int_{\frac{2j\pi}{n}}^{\frac{(2j+1)\pi}{n}} d\Phi - \int_{\frac{(2j+2)\pi}{n}}^{\frac{(2j+3)\pi}{n}} d\Phi \right)$$

$B_0 = 0$ and thus $A_{l,0} = 0$

For $m \neq 0$ we have:

$$B_m = \frac{i}{m} \sum_{j=0}^{n-1} e^{-im\frac{(2j+1)\pi}{n\lambda}} - e^{-im\frac{2j\pi}{n\lambda}} - e^{-im\frac{(2j+2)\pi}{n\lambda}} + e^{-im\frac{(2j+1)\pi}{n\lambda}}$$

$$B_m = \frac{i}{m} \sum_{j=0}^{n-1} e^{-im\frac{(2j+1)\pi}{n\lambda}} \left(2e^{-im\frac{\pi}{n\lambda}} - 1 - e^{-im\frac{2\pi}{n\lambda}} \right)$$

$$B_m = -\frac{1}{m} \sum_{j=0}^{n-1} e^{-im\frac{(2j+1)\pi}{n\lambda}} \left(e^{-im\frac{\pi}{n\lambda}} - 1 \right)^2$$

Upon close inspection, if $\frac{m}{2n} = k$ where k is some integer $k = ...,-2,-1,0,1,2,...$ then

$$B_m = -\frac{1}{m} \sum_{j=0}^{n-1} e^{-im\frac{(2j+1)\pi}{n\lambda}} \left(e^{-im\frac{\pi}{n\lambda}} - 1 \right)^2$$

$$B_m = \frac{1}{m} \sum_{j=0}^{n-1} \left(1 - 1 \right)^2$$

$$B_m = 0 \quad \text{if} \quad \frac{m}{2n} = k$$

The only terms that do not vanish are the ones where $m/2n$ does not equate to an integer. Thus the terms that vanish are $m = 0, \pm 2n, \pm 4n, ...$

The final solution becomes:

$$\Phi(r, \theta, \Phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_{l,m} \left(\frac{r}{a} \right)^l Y_{lm}(\theta, \Phi)$$
\[
A_{l,m} = -V \sqrt{\frac{2l+1}{4\pi}} \sqrt{\frac{(l-m)!}{(l+m)!}} e^{-i\pi l/m} \sum_{j=0}^{m-1} e^{-i(m(2j+1)/m)} \int_{0}^{\pi} P_{l}^{m} (\cos \theta) \sin \theta \, d\theta
\]

and \(A_{l,m} = 0 \) for \(m = 0, \pm 2n, \pm 4n \ldots \)

(b) For the special case of \(n = 1 \) (two hemispheres) determine explicitly the potential up to and including all terms with \(l = 3 \). By a coordinate transformation verify that this reduces to result (3.36) of Section 3.3.

\[
\Phi (r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l, \text{odd}}^{l} A_{l,m} \left(\frac{r}{a} \right)^{l} Y_{lm} (\theta, \phi)
\]

where \(A_{l,m} = -V \sqrt{\frac{2l+1}{4\pi}} \sqrt{\frac{(l-m)!}{(l+m)!}} \int_{-1}^{1} P_{l}^{m} (x) \, dx \)

Expand this into terms up to \(l = 3 \):

\[
\Phi (r, \theta, \phi) = \sum_{m=-1, \text{odd}} A_{1,m} \left(\frac{r}{a} \right) Y_{1m} (0, \phi) + \sum_{m=-2, \text{odd}}^{2} A_{2,m} \left(\frac{r}{a} \right)^{2} Y_{2m} (0, \phi) + \sum_{m=-3, \text{odd}}^{3} A_{3,m} \left(\frac{r}{a} \right)^{3} Y_{3m} (0, \phi) + \ldots
\]

where the \(l = 0 \) term automatically drops out due to the fact that only coefficients for odd \(m \) are non-vanishing.

\[
\Phi (r, \theta, \phi) = \left(\frac{r}{a} \right) [A_{1,-1} Y_{1,-1} + A_{1,1} Y_{1,1}] + \left(\frac{r}{a} \right)^{2} [A_{2,-1} Y_{2,-1} + A_{2,1} Y_{2,1}] + \left(\frac{r}{a} \right)^{3} [A_{3,-3} Y_{3,-3} + A_{3,-1} Y_{3,-1} + A_{3,1} Y_{3,1} + A_{3,3} Y_{3,3}] + \ldots
\]

We must calculate the coefficients explicitly by expanding the definition of the Legendre polynomials and doing the integrals:

\[
A_{1,-1} = iV \sqrt{\frac{3\pi}{2}}, \quad A_{1,1} = iV \sqrt{\frac{3\pi}{2}}
\]

\[
A_{2,-1} = 0, \quad A_{2,1} = 0
\]

\[
A_{3,-3} = iV \sqrt{\frac{35\pi}{256}}, \quad A_{3,3} = iV \sqrt{\frac{35\pi}{256}}
\]

\[
A_{3,-1} = iV \sqrt{\frac{21\pi}{256}}, \quad A_{3,1} = iV \sqrt{\frac{21\pi}{256}}
\]
We plug these back in:

\[
\Phi (r, \theta , \phi) = \left(\frac{r}{a} \right) i V \sqrt{\frac{3\pi}{2}} \left[Y_{1,-1}(0, \phi) + Y_{1,1}(0, \phi) \right]
\]

\[
+ \left(\frac{r}{a} \right)^3 i V \left[\frac{35\pi}{256} (Y_{3,-3} + Y_{3,3}(0, \phi)) + \frac{21\pi}{256} (Y_{3,-1} + Y_{3,1}) \right] + ...
\]

\[
\Phi (r, \theta , \phi) = \frac{3}{2} V \left(\frac{r}{a} \right) \sin \theta \sin \phi + \left(\frac{r}{a} \right)^3 V \left[\frac{35}{64} \sin^3 \theta \sin(3 \phi) + \frac{21}{64} \sin \theta (5 \cos^2 \theta - 1) \sin(\phi) \right] + ...
\]

For \(n = 1 \) only, this problem is actually azimuthally symmetric if we make a coordinate transformation:

\[\cos \theta ' = \sin \theta \sin \phi \]

\[
\Phi (r, \theta , \phi) = \frac{3}{2} V \left(\frac{r}{a} \right) \cos \theta ' - \frac{7}{8} \left(\frac{r}{a} \right)^3 V \left[\frac{5}{2} \cos^3 \theta ' - \frac{3}{2} \cos \theta ' \right] + ...
\]

\[
\Phi (r, \theta , \phi) = \frac{3}{2} V \left(\frac{r}{a} \right) P_1(\cos \theta ') - \frac{7}{8} \left(\frac{r}{a} \right)^3 V P_3(\cos \theta ') + ...
\]

This matches the solution found in the book using an azimuthal symmetry approach.