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PROBLEM:
Consider the following “spherical cow” model of a battery connected to an external circuit. A sphere of 
radius a and conductivity σ is embedded in a uniform medium of conductivity σ'. Inside the sphere 
there is a uniform (chemical) force in the z direction acting on the charge carriers; its strength as an 
effective electric field entering Ohm's law is F. In the steady state, electric fields exist inside and 
outside the sphere and surface charge resides on its surface.

(a) Find the electric field (in addition to F) and current density everywhere in space. Determine the 
surface-charge density and show that the electric dipole moment of the sphere is 
p = 4πε0σa3F/(σ + 2σ').

(b) Show that the total current flowing out through the upper hemisphere of the sphere is

I = 2σσ '
σ+2σ '

π a2 F

Calculate the total power dissipation outside the sphere. Using the lumped circuit relations, P = I2Re = 
IVe, find the effective external resistance Re and voltage Ve.

(c) Find the power dissipated within the sphere and deduce the effective internal resistance Ri and Vi.

(d) Define the total voltage through the relation Vt = (Re + Ri)I and show that Vt = 4aF/3, as well as
 Ve + Vi = Vt. Show that IVt is the power supplied by the “chemical” force.

SOLUTION:
(a) There is a total electric field Eext external to the sphere and there is a total internal field Eint. The 
boundary surface is a sphere and the entire problem has azimuthal symmetry, so the potential inside 
and outside must have the form:

Φint=∑
l=0

∞

Al r l P l(cosθ) and Φext=∑
l=0

∞

B l r
−l−1 P l (cosθ)

We link the two by applying boundary conditions at r = a:

(Eext−Eint )⋅r̂=σ s/ϵ0 and r̂×Eext=r̂×Eint

where σs is the surface charge density, not to be confused with the conductivity σ. Let us look at the 
first boundary condition:

(−∇ Φext+∇ Φint )⋅r̂=σ s /ϵ0



−
∂Φext

∂ r
+

∂Φ int

∂r
=σ s/ϵ0

−∑
l=0

∞

B l(−l−1)a−l−2 P l (cosθ)+∑
l=0

∞

Al l a l−1 Pl (cosθ)=σ s /ϵ0

−∑
l=0

∞

B l(−l−1)a−l−2 P l (cosθ)+∑
l=0

∞

Al l a l−1 Pl (cosθ)=1/ϵ0∑
l=0

∞

C l P l (cosθ)

where σ s=∑
l=0

∞

C l P l(cos θ)

Bl( l+1)a−l−2+Al l a l−1=C l /ϵ0

The other boundary condition is:

r̂×∇ Φext=r̂×∇ Φint

∂Φext

∂θ
=

∂Φint

∂ θ

Bl=Al a
2 l+1

Using both equations above in boxes, we find:

Al=
C l

ϵ0 a l−1(2 l+1)
Bl=

C l a
l+2

ϵ0(2 l+1)

Our solution now becomes:

Φ int=
a
ϵ0
∑
l=0

∞ C l

2 l+1( r
a)

l

P l (cosθ) and Φext=
a
ϵ0
∑
l=0

∞ C l

2 l+1( a
r )

l+1

P l(cos θ)

where C l=
2 l+1

2 ∫
0

π

σ s(θ) P l(cos θ)sinθ d θ

This is the general solution. Given any charge density on the surface of a sphere, we can use this 
solution to find the fields.

In this problem, the chemical force inside the sphere acts as an effective electric field in addition to the 
actual electric field and is given as uniform and pointing in the z direction:

F(x)=F ẑ

Because the actual internal electric field is in response to the chemical force (without the chemical 
force, there would be no electric fields anywhere), and because of the symmetry, we can assume the 



internal electric field is also uniform and in the z direction.

Eint=E int ẑ

Φint=−E int r cos θ

Set this equal to the general expression:

−E int r cos θ= a
ϵ0
∑
l=0

∞ C l

2 l+1( r
a)

l

P l(cosθ)

Due to orthogonality, only the the l = 1 term can be non-zero.

C1=−3ϵ0 E int and Cl = 0 for l ≠ 1

Our solution is now:

Φint=−E int r cosθ , Φext=− E int
a3

r2 cosθ , σ s=−3ϵ0 E int cosθ

or

Eint= E int ẑ , Eext=( ẑ−3 r̂ cosθ) E int
a3

r3 , σ s=−3ϵ0 E int cosθ

Ohm's law states J =  σE. The internal current is a result of the chemical force and the internal electric 
field:

J int=σ(Eint+F) and Jext=σ ' Eext

J int=σ(E int+F ) ẑ and Jext=σ '( ẑ−3 r̂ cosθ) E int
a3

r3

The component of the current normal to the sphere's surface must be continuous to ensure we are in a 
steady-state configuration:

[J int⋅r̂=Jext⋅r̂ ]r=a

σ( E int+F )=−σ ' 2 E int

E int=− σ
σ+2σ '

F

Our solutions now become:



Eint=− σ
σ+2σ '

F ẑ , Eext=
σ

σ+2σ '
F (3 cosθ r̂− ẑ) a3

r 3 , σ s=3ϵ0
σ

σ+2σ '
F cosθ

J int=
2σ σ '

σ+2σ '
F ẑ , Jext=(3cos θ r̂− ẑ) σ 'σ

σ+2σ '
F a3

r3

Note that the external field has the same pattern as that due to a point dipole. Comparing the field in 
this problem to the field of a dipole:

E= 1
4πϵ0

p
r3 [3 cosθ r̂−ẑ ]

we see that the battery acts as an effective dipole with dipole moment:

p=4πϵ0 F a3 σ
σ+2σ '

(b) The total current flowing out through the upper hemisphere is:

I =∫
0

π/2

∫
0

2π

J int⋅r̂ a2sinθ d ϕd θ

I =a2 F 2σσ '
σ+2σ ' ∫0

π /2

cosθsinθd θ∫
0

2π

d ϕ

I = 2σσ '
σ+2σ '

π a2 F

Because the conductivity in both regions is finite, some of the energy is lost to Joule heating of the 
materials. The power dissipated by loosing electromagnetic energy to mechanical energy when creating 
currents is:

P=∫ J⋅E dV

Using Ohm's law, this becomes:

P int=
1
σ∫ J int

2 dV and Pext=
1
σ '∫ J ext

2 dV

P int=
16σσ '2

3(σ+2σ ')2 F 2 πa3 and P ext=
σ '2σ2

(σ+2σ ')2 F 2 a6 1
σ '∫0

2π

∫
0

π

∫
a

∞

(3cos2 θ+1) 1
r 4 sinθ dr d θd ϕ



P int=
16σσ '2

3(σ+2σ ')2 F 2 πa3 and P ext=
8σ 'σ2

3(σ+2σ ')2 F 2π a3

The total power dissipated is therefore:

P=P int+P ext

P= 8σσ '
3(σ+2σ ')

F 2 πa3

The effective external resistance is therefore:

Rext=
P ext

I 2

Rext=
2

3σ 'π a

The effective external voltage is:

V ext=
Pext

I

V ext=
4σ

3(σ+2σ ')
F a

(c) The power dissipated inside the sphere was already found in the previous step to be:

P int=
16σσ '2

3(σ+2σ ')2 F 2 πa3

Rint=
P int

I 2

Rint=
4

3σπa

V int=
P int

I

V int=
8σ '

3(σ+2σ ')
F a

(d) The total voltage is:  Vt = (Re + Ri)I



V t=( 2
3σ 'πa

+ 4
3σπa ) 2σσ '

σ+2σ '
πa2 F

V t=
4
3

a F

We can also calculate it as the sum of the external and internal voltages:

   Vt = Vext + Vint 

V t=
4σ

3(σ+2σ ')
F a+ 8σ '

3(σ+2σ ')
F a

V t=
4
3

F a

The total power supplied by the chemical force is: Pt = IVt

P t=
8σσ '

3(σ+2σ ')
πa3 F2

This matches the total power dissipated by the materials.


