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PROBLEM:

An insulated, spherical, conducting shell of radius a is in a uniform electric field Ey. If the sphere is cut
into two hemispheres by a plane perpendicular to the field, find the force required to prevent the
hemispheres from separating

(a) if the shell is uncharged;

(b) if the total charge on the shell is Q.

SOLUTION:

(a) Align the z axis with the direction of the electric field. Find the potential outside a sphere at the
origin in a uniform field by placing charges at z = -R and z = +R with charges +Q and -Q and letting R
and Q approach infinity with Q/R® constant. The response of the sphere can be represented by placing
two image charges -Qa/R and +Qa/R in the sphere at -a*/R and +a*/R. The potential outside an
uncharged conductor in a uniform field is therefore the potential of these four charges:
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In the limit R >> r, this becomes:
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The first term is just the potential due to the applied field in spherical coordinates. The second term is
the potential of a perfect dipole. The sphere there has an induced charge distribution that acts as a
perfect dipole.

The electric field is therefore:
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The electric field at the surface of the sphere is:

E(r=a)=E,3cos0f



The charge distribution on the sphere's surface is found using:
o=¢,t-E(r=a)
0=3¢,E,cosb

If the sphere is now cut into hemispheres at the polar angle 6 = n/2, the bottom hemisphere will feel a
total force:

F:f o(x)E(x)da

We have to be careful and not include the force of the bottom hemisphere on itself. We do this by using
the relation £=-% which gives us just the electric field at the surface of a conductor due to non-self

contributions. Using this, we have:
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The force needed to keep the bottom hemisphere in place would therefore have to be equal and in the
opposite direction:
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Due the symmetry, the force needed to keep the other hemisphere in place would be equal and
opposite.

(b) If the sphere has a total charge of Q, it will just spread out uniformly on the sphere as an additional
charge to the induced one.
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The total force on the bottom hemisphere will therefore be:
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The first term represents the force on the induced charges due the external field and the field from the
induced charges. The second term represents the force on the charge O due the external field. The third
term represent the force O on itself. Note that the force of the external field on the point-charge-like
charge Q will just tend to shift it and not separate it. Because we just want forces that will separate the
two hemispheres, we must drop the middle term:
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The force needed to keep the bottom hemisphere touching the upper sphere is therefore:
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