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PROBLEM:
An insulated, spherical, conducting shell of radius a is in a uniform electric field E0. If the sphere is cut 
into two hemispheres by a plane perpendicular to the field, find the force required to prevent the 
hemispheres from separating

(a) if the shell is uncharged;

(b) if the total charge on the shell is Q. 

SOLUTION:
(a) Align the z axis with the direction of the electric field. Find the potential outside a sphere at the 
origin in a uniform field by placing charges at z = -R and z = +R with charges +Q and -Q and letting R 
and Q approach infinity with Q/R2 constant. The response of the sphere can be represented by placing 
two image charges -Qa/R and +Qa/R in the sphere at -a2/R and +a2/R. The potential outside an 
uncharged conductor in a uniform field is therefore the potential of these four charges:
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In the limit R >> r, this becomes:

Φ=−E0 r cosθ+E0
a3

r2 cosθ  where E0 was recognized as 2Q/4πε0R2

The first term is just the potential due to the applied field in spherical coordinates. The second term is 
the potential of a perfect dipole. The sphere there has an induced charge distribution that acts as a 
perfect dipole.

The electric field is therefore:

E=−∇ Φ

E=E0[cosθ r̂−sinθθ̂+a3
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The electric field at the surface of the sphere is:

E(r=a)=E0 3 cosθ r̂



The charge distribution on the sphere's surface is found using:

σ=ϵ0 r̂⋅E(r=a)

σ=3ϵ0 E0 cosθ

If the sphere is now cut into hemispheres at the polar angle θ = π/2, the bottom hemisphere will feel a 
total force:

F=∫σ(x)E(x)d a

We have to be careful and not include the force of the bottom hemisphere on itself. We do this by using 
the relation E= σ

2ϵ0
which gives us just the electric field at the surface of a conductor due to non-self 

contributions. Using this, we have:
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The force needed to keep the bottom hemisphere in place would therefore have to be equal and in the 
opposite direction:

F= 9
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Due the symmetry, the force needed to keep the other hemisphere in place would be equal and 
opposite.

(b) If the sphere has a total charge of Q, it will just spread out uniformly on the sphere as an additional 
charge to the induced one.

σ=3ϵ0 E0 cosθ+ Q
4πa2

The total force on the bottom hemisphere will therefore be:
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The first term represents the force on the induced charges due the external field and the field from the 
induced charges. The second term represents the force on the charge Q due the external field. The third 
term represent the force Q on itself. Note that the force of the external field on the point-charge-like 
charge Q will just tend to shift it and not separate it. Because we just want forces that will separate the 
two hemispheres, we must drop the middle term:
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The force needed to keep the bottom hemisphere touching the upper sphere is therefore:
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