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PROBLEM:
A closed volume is bounded by conducting surfaces that are the n sides of a regular polyhedron 
(n = 4, 6, 8, 12, 20). The n surfaces are at different potentials Vi, i = 1, 2, …, n. Prove in the simplest 
way you can that the potential at the center of the polyhedron is the average potential on the n sides. 
This problem bears on Problem 2.23b, and has an interesting similarity to the result of Problem 1.10.

SOLUTION:
Because the potential obeys the superposition principle, we can break down the total potential at the 
center point in the polyhedron due to the n sides at different potentials Vi as a sum of potentials, each 
one due to one side being held at its potential Vi and all other sides being held at zero:

Φ(V 1,V 2,V 3,. .. ,V n)=Φ(V 1, 0,0,. .. ,0)+Φ(0,V 2, 0,... ,0)+...+Φ(0, 0, 0,... ,V n)

Φ(V 1,V 2,V 3,. .. ,V n)=∑
i=1

n

Φ(i th  side at V i , all others at 0)

Φ(V 1,V 2,V 3,. .. ,V n)=∑
i=1

n

Φi   where  Φi=Φ i(i
th  side at V i , all others at 0)

Now consider a special case where all the walls are held at the same potential Vi = V. In this case, the 
relaxation method tells us that the entire interior, including the center point must also be at this constant 
potential so that Φ=V . Because the center point is equally distant from each face and they all have the 
same area, the potentials at the center due to each face are all equal if all the faces are equal: Φi=Φ0 . 
Plugging these values into the last equation above, for this special case, we have:

V=∑
i=1

n

Φ0

V=nΦ0

Φ0=
V
n

The contribution at the center from each face is therefore V/n where V is the potential of the face. Now, 
if a face a held at a potential of zero, it obviously contributes nothing in the sense of the superposition 
of potentials. (Surfaces at zero potential obviously contribute to a problem overall because they provide 
boundary conditions that must be met. A surface at zero potential is very different from no surface.) 
This means that if all other faces are held at a potential of zero except face i which is held at potential 
Vi, the potential at the center will be Vi/n by the equation above:



Φi=
V i

n

Note that this is only true at the center where all faces are equally distant from the observation point. 
Adding up all the potential components (plugging this into the general equation at the beginning), we 
have:

Φ=∑
i=1

n (V in )

Φ=
∑
i=1

n

V i

n

This is just the average over all the potentials of each individual face.

Another way to solve this is in terms of the Green's function method. There is no charge inside the 
polyhedron, so that the Green's function method solution becomes:

Φ(x)=− 1
4π ∮(Φ d GD

d n ' )da '

This is just an integral over the entire surface, so we can break it up into an integral over each face:

Φ(x)=− 1
4π ∑

i=1

n

∫S i (V i d GD, i

d n ' )da '

Now the potential is constant across an entire given face, so that it can come out of the integral:

Φ(x)=− 1
4π ∑

i=1

n

V i∫S i

d GD , i

d n '
da '

The integral at this point is entirely geometrical. The Green's function depends entirely on the geometry 
of the surface and the distance between observation point and the surface. Because each face of a 
regular polyhedron has the exact same shape, area, angle, and distance from the center, the integral 
must be the same for all surface and can come out of the summation symbol:

Φ(x)=− 1
4π ∫S i

d GD ,i

d n '
da '∑

i=1

n

V i

At this point, we can suck everything in front into one constant:

Φ(x)=C∑
i=1

n

V i



Similar to as was done before, we can find the constant C by taking the special case of all surfaces at 
the same potential V leading to points inside being at the potential V:

V=C∑
i=1

n

V

V=C nV

1=C n

C=1
n

So that finally:

Φ=
∑
i=1

n

V i

n


