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PROBLEM:
A hollow cube has conducting walls defined by six planes x = 0, y = 0, z = 0, and x = a, y = a, z = a. 
The walls z = 0 and z = a are held at constant potential V. The other four sides are at zero potential.

(a) Find the potential Φ(x, y, z) at any point inside the cube.

(b) Evaluate the potential at the center of the cube numerically, accurate to three significant figures. 
How many terms in the series is it necessary to keep in order to attain this accuracy? Compare your 
numerical result with the average value of the potential on the walls. See Problem 2.28.

(c) Find the surface-charge density on the surface z = a.

SOLUTION:
The problem contains no charge, so the electric potential is described everywhere inside the cube by 
the Laplace equation:

∇2 =0

This problem has a boundary, the cube, that best matches rectangular coordinates. In rectangular 
coordinates, the Laplace equation becomes:

∂2
∂ x 2 

∂2 
∂ y 2 

∂2
∂ z2 =0

Using the method of separation of variables, the most general solution to this equation is:

x , y , z =A0B0 x A0B0 y A 0B 0 z 
∑


A0B0 x A e i yB e−i yA e zB e− z

∑


 A ei xBe−i x A0B0 y A e zB e− z

∑
 , 

A ei xB e−i x A e i yB e−i y Ae zB e− z

Apply the boundary condition, Φ(x = 0, y, z) = 0



0= A0 A0B0 y  A 0B 0 z
∑


 A0 A ei  yB e−i y A e zB e− z

∑


 ABA0B0 y Ae zB e− z

∑
 ,

 ABA ei  yB e−i y A e zBe− z

This must be true for all y and z, so that each term must vanish separately.
This forces Aα0 = 0 and Bα = -Aα. The solution now becomes:

x , y , z =B0 x A0B0 y A 0B 0 z 
∑


B0 x A e i yB e−i y Ae  zB e− z

∑


Asin  x A0B0 y A e zBe− z

∑
 ,

Asin  x  A e i yB e−i y Ae zB e− z

Similarly, the boundary condition, Φ(x, y = 0, z) = 0 leads to  Aβ0 = 0 and Bβ = -Aβ which gives the 
solution:

x , y , z =B0 xB0 y A 0B 0 z 
∑


B0 x  A sin y A e zBe− z

∑


A sin  x B0 y A e zB e− z

∑
 , 

A sin x  A sin y A e zBe− z

Now apply the boundary condition Φ(x = a, y, z) = 0

0=B0 aB0 y A 0B 0 z 
∑


B0 a A sin  y Ae zB e− z

∑


A sina B 0 y A e zBe− z

∑
 ,

Asin a A sin  y A e zB e− z

The only way this can be true for all y and z is if Bα0 = 0 and α = nπ/a where n = 0, 1, 2,...

x , y , z =∑
n

Ansin n x
a B 0 y A e zB e− z∑

n ,
Ansin n x

a  Asin  y  A e zBe− z

Similarly, apply the boundary condition Φ(x, y = a, z) = 0 to get Bβ0 = 0 and β = mπ/a where 
n = 0, 1, 2,...

x , y , z =∑
n , m

Ansin n x
a Amsinm y

a A e zB e− z



By definition we have 2=22 so that we now know =n2m22/ a2 . We can combine several 
constants so that we now have:

x , y , z =∑
n , m

sin n x
a sinm y

a An ,m e zn2m 22/a2

Bn ,m e−zn2m22 /a 2



Now apply the boundary condition Φ(x, y, z = 0) = V

V =∑
n ,m

sinn x
a sin m y

a  An , mBn , m

Multiply both side by sin n ' x
a sinm ' y

a  and integrate over x and y from 0 to a

∫
0

a

∫
0

a

V sin n ' x
a sinm ' y

a dx dy

                 =∑
n , m

∫
0

a

sin n x
a sin n ' x

a dx∫
0

a

sinm y
a sinm ' y

a dy  An , mBn , m

Due to orthogonality, each integral on the right is zero, except when n = n' and m = m'

∫
0

a

∫
0

a

V sin n x
a sinm y

a dx dy=a2

4
An , mBn , m

An ,mBn , m=
4V
a2 ∫

0

a

sin n x
a dx∫

0

a

sin m y
a dy

An ,mBn , m=
4V
a2

a
n

[1−−1n ] a
m

[1−−1m]

An , mBn, m=
16 V

n m2   n, m = odd

                 
 Now apply the final boundary condition Φ(x, y, z = a) = V

V =∑
n ,m

sinn x
a sin m y

a  An , m ean2m22 /a 2

Bn , me−a n2m2 2/a2



Repeat the process done above to get

An , men2m2 2

Bn ,m e−n 2m22

= 16 V
n m2 n, m = odd

Solve the system of equations in the boxes above to find:



An , m=
8 V

nm2
e

−1
2 n2m22

cosh  /2n2m2

Bn , m=
8 V

n m 2
e

1
2 n2m22

cosh  /2n2m2

The final solution is now:

x , y , z = ∑
n ,m  odd

sin n x
a sinm y

a  8V
n m2 e

−
1
2 n 2m22

ez n2m2 2/a2

e
1
2 n2m2 2

e−zn 2m22 /a 2

cosh  /2n2m2 
x , y , z = ∑

n ,m  odd

16V
n m2 sin n x

a sinm y
a cosh  /2n2m22 z / a−1

cosh  /2n2m2 
(b) Evaluate the potential at the center of the cube numerically, accurate to three significant figures. 
How many terms in the series is it necessary to keep in order to attain this accuracy? Compare your 
numerical result with the average value of the potential on the walls. See Problem 2.28.

The potential at the center of the cube is:

a /2,a /2,a /2=
16V
2 ∑

n ,m  odd

1
n m sinn

2 sinm
2  1

cosh  /2n2m2
Φ(a /2,a /2,a /2)=V [ 16

π2 sin(π
2)sin(π

2)( 1
cosh ((π/ 2)√2))

                                16
2

1
3

sin2 sin3
2  1

cosh  /210
                                 16

2
1
3

sin3
2 sin 2  1

cosh  /210
                                16

2
1
5

sin2 sin 5
2  1

cosh  /226 ... ]

                                
a /2,a /2,a /2=V [0.3476−0.0075−0.00750.0002...]

Here is solution, to three significant figures, if you only keep the first term, or the first two terms, etc:

1 term a /2,a /2,a /2=V [0.348 ]
2 termsa /2,a /2, a /2=V [0.340]
3 terms a/ 2,a/ 2,a /2=V [0.333]
4 termsa /2,a /2, a /2=V [0.333]



We only have to keep the first three terms to have the answer accurate to three significant figures. It is 
obvious that the solution is converging to:

a /2,a /2,a /2=V
3

There are six walls on the cube and two sides have a non-zero potential V, so the average value of the 
potential on the sides of the cube is Φave on surf=

2 V
6 = V

3 . This leads to the interesting conclusion that:

a /2,a /2,a /2=ave on surf

(c) Find the surface-charge density on the surface z = a.

=[−0
d 
dn ]n=a

We have solved the potential on the inside of the cube, so we can only use that potential to find the 
surface charge density on the inside of the z = a surface. The normal to the inside surface is in the 
negative z direction so that:

=[0
d 
dz ]z=a

=[0
d
dz ∑

n , m  odd

16V
nm2 sin n x

a sin m y
a cosh  /2n2m22 z /a −1

cosh  /2n2m2 ]
z=a

=[0 ∑
n ,m  odd

16V
n m2 sin n x

a sinm y
a  sinh  /2n2m2 2 z /a−1

cosh  /2n2m2  /an2m2]
z=a

σ=
16 ϵ0 V

πa ∑
n , m  odd

√n2+m2

n m
sin( nπ x

a )sin(mπ y
a )(tanh ((π/ 2)√n2+m2))


