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PROBLEM:
(a) Two halves of a long hollow conducting cylinder of inner radius b are separated by small 
lengthwise gaps on each side, and are kept at different potentials V1 and V2. Show that the potential 
inside is given by

 ,=
V 1V 2
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V 1−V 2

 tan−1 2b
b2−2 cos

where  is measured from a plane perpendicular to the plane through the gap.

(b) Calculate the surface-charge density on each half of the cylinder.

SOLUTION:
Due to the symmetry of the problem, it is apparent that the solution will be best expressed in cylindrical 
coordinates. Additionally, because the solution will be independent of the z coordinate, the problem 
reduces to the two dimensions of polar coordinates  , . Because the problem contains no charge, 
the problem simplifies down to solving the Laplace equation ∇2 =0 in polar coordinates and 
applying the boundary condition =b ,=V  where:

V ={V 1   if  /23/2
V 2   if  /23/2}

The Laplace equation in polar coordinates is:
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Separation of variables leads to the general solution:

 ,=a0b0 ln A0B0 ∑
 ,≠0
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−  A e i B e−i

We desire a valid solution at the origin, which is only possible if b0 = 0 and bυ = 0 so that the solution 
becomes:

 ,=A0B0  ∑
 ,≠0

 A ei B e−i 

We desire a single, valid solution over the full angular range, so the single-value requirement means 
 ,= ,2 . When we apply this, we get:
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Which leads to B0 = 0 and υ = n where n = 1, 2, ... We now have:
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Now apply the last boundary condition =b ,=V 

V =A0∑
n=1

∞

bn  Anei nBn e−i n (Eq. 1) 

Let us first find the A0 term. Integrate both sides over the full angular sweep.
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Let us now find the An coefficients. Multiply (Eq. 1) on both sides by e−i n ' and integrate over all 
angles  :
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Plug in the explicit form of the potential on the boundary which breaks the integral into two parts:
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Let us now solve for the Bn coefficients. Take (Eq. 1) again and this time multiply by e i n ' and integrate 
over all  :
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Plug in the explicit form of the potential on the boundary which breaks the integral into two parts:
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Now that we have found all of the coefficients, the solution is determined:
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Now we recognize the Taylor expansion of the arctan: tan−1x= ∑
n=1,odd
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ℜ[ tan−1e i

b ]
Using the identity tan−1(z)= i

2 [ln (1−i z )−ln (1+i z)] and expanding the complex number z in its 
components, we can prove the identity:

ℜ [tan−1 z ]=1
2

tan−12 ℜ z
1−∣z∣2 

We now use this identity:
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(b) Calculate the surface-charge density on each half of the cylinder.

As derived earlier using a Gaussian pillbox surface, the surface-charge density on a conductor is related 
to the potential according to:
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We assume that the problem is seeking the charge density on the inside surface of the conductor 
because that is where we know the potential. In that case, the normal to the inside surface of the 
conductor points in the opposite direction as the radial dimension, so that n = -ρ.
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