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PROBLEM:

(a) Two halves of a long hollow conducting cylinder of inner radius b are separated by small
lengthwise gaps on each side, and are kept at different potentials V', and V>. Show that the potential
inside is given by

V.+V, V.-V
®(p, d)= 1 2 U ztan_l( 2bp

where ¢ is measured from a plane perpendicular to the plane through the gap.

(b) Calculate the surface-charge density on each half of the cylinder.

SOLUTION:

Due to the symmetry of the problem, it is apparent that the solution will be best expressed in cylindrical
coordinates. Additionally, because the solution will be independent of the z coordinate, the problem
reduces to the two dimensions of polar coordinates (p , ¢) . Because the problem contains no charge,
the problem simplifies down to solving the Laplace equation V>®=0 in polar coordinates and
applying the boundary condition ® (p=b, &)=V () where:

V()=
2 V, if m/2<p<3m/2

V. if n/z>¢>3n/2}

The Laplace equation in polar coordinates is:

2
11( aq>)+izaq>:0
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Separation of variables leads to the general solution:

®(p, d)=(ao+bolnp)(Ag+Bodb)+ Y. (a0 +b,p )[4, e +B, e

v,v#0

We desire a valid solution at the origin, which is only possible if by= 0 and b,= 0 so that the solution
becomes:

®(p,d)=4,+B,p+ Z pV(AV " +B e

v,v#0

We desire a single, valid solution over the full angular range, so the single-value requirement means
®(p,Pp)=P(p,dp+21). When we apply this, we get:



Ag+Bob+ 2. p'(A,e”+B, e )= Ag+ By(b+2m)+ Y, p'[d, e 04 B om0

v,v#0 v, v#0

Which leads to Bo=0 and v = n where n =1, 2, ... We now have:

d(p, ¢)=A0+i p”(Anei"d’+Bne_i"¢)

n=1

Now apply the last boundary condition ®(p=>b,d)=V ()

Vip)=Ag+ D, b"(4,e""+B,e"") (Eq 1)
n=1

Let us first find the 4, term. Integrate both sides over the full angular sweep.
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Let us now find the 4, coefficients. Multiply (Eq. 1) on both sides by e ""'® and integrate over all
angles ¢ :
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Plug in the explicit form of the potential on the boundary which breaks the integral into two parts:



1 [ o« ‘ 3m/2 '
v, f doe "+, f dpe"?

”_21Tbn_ -m/2 /2
[ ing /2 Cing T2
— -7 [ A
2nh | In | wp N fxp
(_1)(n+1)/2
Anz—bn[Vl—Vz] and 4,=0 if n=even
—nT

Let us now solve for the B, coefficients. Take (Eq. 1) again and this time multiply by ¢"** and integrate
over all ¢ :
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Plug in the explicit form of the potential on the boundary which breaks the integral into two parts:
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Now that we have found all of the coefficients, the solution is determined:
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Now we recognize the Taylor expansion of the arctan: tan~ (x)= Z " X
n=1,odd
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Using the identity tan~'(z)=2%[In (1—iz)—In (1+i z)] and expanding the complex number z in its
components, we can prove the identity:

iR[tan_1 (z)]zltan_1 (215}{ (ZZ))
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We now use this identity:

d(p,d)=

V1+V2+V]_V2tan1( 2bp
2 L

(b) Calculate the surface-charge density on each half of the cylinder.

As derived earlier using a Gaussian pillbox surface, the surface-charge density on a conductor is related
to the potential according to:

dd
=" |

We assume that the problem is seeking the charge density on the inside surface of the conductor
because that is where we know the potential. In that case, the normal to the inside surface of the
conductor points in the opposite direction as the radial dimension, so that n = -p.
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