

PROBLEM:

(a) For the three capacitor geometries in Problem 1.6 calculate the total electrostatic energy and express it alternatively in terms of the equal and opposite charges Q and -Q placed on the conductors and the potential difference between them.

(b) Sketch the energy density of the electrostatic field in each case as a function of the appropriate linear coordinate.

SOLUTION:

(a) For a simple capacitor, the total energy is given by $W = \frac{1}{2}QV$. In problem 1.6, we found the following results.

Parallel plates capacitor: $V = \frac{Qd}{A\epsilon_0}$ and $E = \frac{Q}{A\epsilon_0}$

Concentric spheres capacitor: $V = \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{a} - \frac{1}{b}\right)$ and $E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$

Concentric cylinders capacitor: $V = \frac{Q}{2\pi\epsilon_0 L} \ln\left(\frac{b}{a}\right)$ and $E = \frac{Q}{2\pi r\epsilon_0 L}$

It is straight-forward to substitute these equations into the energy equation and find the following:

Parallel plates capacitor:
$$W = \frac{Q^2 d}{2 A \epsilon_0}$$
 and $W = \frac{V^2 A \epsilon_0}{2 d}$
Concentric spheres capacitor: $W = \frac{Q^2}{8 \pi \epsilon_0} \left(\frac{1}{a} - \frac{1}{b}\right)$ and $W = \frac{V^2 2 \pi \epsilon_0 a b}{b - a}$
Concentric cylinders capacitor: $W = \frac{Q^2}{4 \pi \epsilon_0 L} \ln\left(\frac{b}{a}\right)$ and $W = \frac{V^2 \pi \epsilon_0 L}{\ln(b/a)}$

(b) The energy density is defined as $w = \frac{\epsilon_0}{2}E^2$. A simple substitution of the fields found in problem 1.6 reveals:

Parallel plates capacitor:

$$w = \frac{Q^2}{2\epsilon_0 A^2}$$

Concentric cylinders capacitor:

$$w = \frac{Q^2}{8\pi^2\epsilon_0 L^2}r^{-2}$$

