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PROBLEM:
The time-averaged potential of a neutral hydrogen atom is given by
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where q is the magnitude of the electronic charge, and α-1 = a0/2, a0 being the Bohr radius. Find the 
distribution of charge (both continuous and discrete) that will give this potential and interpret your 
result physically.

SOLUTION:
The Poisson equation links charge densities and the electric scalar potential that they create. We use it 
here to find the charge density. We must perform a straight-forward differentiation in spherical 
coordinates.
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Expand this in spherical coordinates:
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The potential is spherically symmetric, so that the potential depends only on the radial coordinate - the 
partial derivatives of the potential are all zero, except for the one with respect to the radial component.
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Evaluate the equation explicitly:
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Now we must be careful because 1/r blows up at the origin. Split the last term into two cases:
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Away from the origin, 1/r does not blow up and the derivatives can be evaluated normally. The last 
term ends up equating to zero, so that our equations now becomes:
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At r ≈ 0, we have e− r=1 so that the two cases become:
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Now use the relation:
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which when evaluated explicitly becomes:
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Plug this into the above set of equations:
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Because the delta function is zero everywhere except at the origin, and because the first term of the first 
equation is just the specific r = 0 form of the first term of the second equation, the two cases can be 
combined into one case:
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This corresponds physically to a positive point charge at the origin with one unit of elementary charge, 
and a finite cloud of negative charge that decays exponentially, but contains a total charge of one unit 
of elementary charge. 

From a time-averaged perspective then, hydrogen in the ground state contains a positive point charge 
at the center and a circular cloud of negative charge. This is of course only useful for conceptualization 
purposes, because at atomic sizes the system behaves quantum mechanically, not classically.


