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PROBLEM:
The Dirac delta function in three dimensions can be taken as the improper limit as α → 0 of the 
Gaussian function

D  ; x , y , z =2−3/2 −3exp[− 1
22 x2 y2 z2]

Consider a general orthogonal coordinate system specified by the surfaces u = constant, v = constant, 
w = constant, with length elements du/U, dv/V, dw/W in the three perpendicular directions. Show that

x−x '=u−u ' v−v ' w−w '⋅UVW

by considering the limit of the Gaussian above. Note that as α → 0 only the infinitesimal length 
element need be used for the distance between the points in the exponent.

SOLUTION:
Start with the general property of a Dirac delta:

∫
−∞

∞

∫
−∞

∞

∫
−∞

∞

 x  y   z dx dy dz=1

Substitute in our representation:
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D  ; x , y , z dx dy dz=1

Now transform the volume element into the new coordinate system
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We do not know exactly how the one system of coordinates transforms into the other, so we cannot 
transform D in a direct manner. Let us instead define an intermediate variable function F according to:

F u , v ,w=lim
0

D  ; x , y , z u , v ,w  1
U V W

With this definition our integral becomes
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F u , v ,wdu dv dw=1



Because we are integrating over all space, we are free to make a change of variables which just shifts 
the origin.
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F u−u ' , v−v ' ,w−w 'dudv dw=1

Comparing this to the very first equation we see that it is identical except with different integration 
labels and therefore:

F u−u ' , v−v ' , w−w '= u−u ' v−v 'w−w '

so that, after plugging back in, we have

u−u 'v−v ' w−w '=lim
0

D  ; x , y , z u ,v ,w 1
U V W

Solve for D:

lim
 0

D  ; x , y , z u ,v ,w =u−u 'v−v 'w−w 'U V W

The entity on the left, no matter what coordinate system it is represented in, is just what we mean by 
the general three-dimensional Dirac delta:

x−x '=u−u ' v−v ' w−w '⋅UVW

Now note that we never used the explicit form of D, so we have solved the problem in a way that the 
book did not intend. Let us try solving the problem using a method that uses the explicit form of D.

D  ; x , y , z =2−3/2 −3exp[− 1
22 x2 y2 z2]

Make a change of variables x → x – x', etc. (Otherwise we will not end up with the most general case.)

D ; x−x ' , y− y ' , z−z '=2−3/ 2−3 exp[− 1
22 x− x '2 y− y '2 z− z '2]

As α → 0, D will become zero unless x – x' approaches zero as well. In calculus, we remember that
x – x' approaching zero becomes dx. Therefore we have:

D  ; x−x ' , y− y ' , z−z '=2−3/ 2−3 exp[− 1
2 2 dx 2dy2dz2]

We recognize the last part in parentheses as the incremental arc length element ds squared:

D ; x−x ' , y− y ' , z−z '=2−3/ 2−3 exp[− 1
22 ds2]



Expand the arc length in the new coordinate system:

D=2−3 /2−3 exp[− 1
22 du2

U 2 dv2

V 2 dw2

W 2 ]
Note that dx≠du /U and we are not making that claim here. Rather, the entire three-dimensional 
incremental arc length ds is the same in all orthogonal coordinate systems. Now expand the increments 
back into differences:

D=2−3 /2−3 exp[− 1
22 u−u '2

U 2 
v−v '2

V 2 
w−w '2

W 2 ]
D=[ e−u−u '2 /2 2U 2

2  ][ e−v−v '2 /2 2V 2

2  ][ e−w−w '2/22 W 2

2 ]
Now make the substitution α → α1/U in the first bracket,  α → α2/V in the second bracket, and  α → 
α3/W in the last bracket. We can do this as long as we let α1, α2, and α3 go to zero just like we were 
letting α go to zero.

D=[ e−u−u '2 /21
2

21
][ e−v−v '2 /22

2

22
][ e−w−w '2 /23

2

23
]U V W

We now let the alpha's approach zero. Each term in brackets on the right side becomes a one-
dimensional linear Dirac delta. The left side becomes the general expression for the three-dimensional 
Dirac delta:

x−x '=u−u ' v−v ' w−w '⋅UVW

Now this is a very useful result. Suppose we have a point charge. In spherical coordinates, we can find 
the representation of its Dirac delta using the above expression. For spherical coordinates
u=r , v= ,w= and the length elements are dr , r d  , rsin d  so that U=1,V= 1

r ,W = 1
r sin θ and

x−x '= r−r '− ' − ' 1
r 2sin

(Spherical Coordinates)

Note that it is fairly straight-forward to prove using Dirac delta properties that
− '/sin=cos−cos ' so that the three-dimensional Dirac delta in spherical coordinates is 
often written

x−x '= r−r 'cos −cos ' − ' 1
r 2

as it is on p. 120 in Jackson.

Similarly in cylindrical coordinates, u=r , v= ,w=z and the length elements are dr , r d  , dz so that



U=1, V=1
r

,W =1 and

x−x '= r−r '− ' z−z '1
r (Cylindrical Coordinates)

Assume that instead of a point charge, we have a line charge shaped into a ring, centered on the z axis, 
located at some radius r' and polar angle θ'. The charge is distributed along the ring according to the 
line charge density  . The total charge density in this case would be:

=u−u 'v−v 'U V  w (Spherical Coordinates)

=
 r−r '− ' 

r (Spherical Coordinates)


