PROBLEM:
The Dirac delta function in three dimensions can be taken as the improper limit as « — 0 of the
Gaussian function

D(x;x,y, z)=27) >« exp| - % (x*+y*+2%)
2x
Consider a general orthogonal coordinate system specified by the surfaces u = constant, v = constant,
w = constant, with length elements du/U, dv/V, dw/W in the three perpendicular directions. Show that
S(x—x")=8(u—u")d(v—v")s(w—w")-UVW
by considering the limit of the Gaussian above. Note that as @ — 0 only the infinitesimal length

element need be used for the distance between the points in the exponent.

SOLUTION:
Start with the general property of a Dirac delta:

8°‘=8

T Jstx (z)dxdydz=1
Substitute in our representation:
f f f lim D (x;x,y,z)dxdydz=1
—o0 —0 —00 x—0

Now transform the volume element into the new coordinate system

[ IimD(x,;x,y,z) ———=1
fJ'J‘ ( » )du dv dw

We do not know exactly how the one system of coordinates transforms into the other, so we cannot
transform D in a direct manner. Let us instead define an intermediate variable function F" according to:

F(u,v,w)=£iino D(,;x,y,zou,v,w) TV

With this definition our integral becomes

8‘-=8
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Because we are integrating over all space, we are free to make a change of variables which just shifts
the origin.
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Comparing this to the very first equation we see that it is identical except with different integration
labels and therefore:
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Flu—u',v—v',w—w")dudvdw=1
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Flu—u',v—v',w—w")=8(u—u")d(v—v")d(w—w")

so that, after plugging back in, we have

6 _'6 _'6 _':1. D s X, ), s Vo
(u—u")d(v—=v")8(w—w") Lim ((xxyz—mvw)UVW

Solve for D:

lim D(a;x,y,zou,v,w)=8(u—u")d(v—y")§(w—w"\UV W

x—0

The entity on the left, no matter what coordinate system it is represented in, is just what we mean by
the general three-dimensional Dirac delta:

| 6(x—x')=6(u—u')6(v—v')6(w—w‘)-UVW|

Now note that we never used the explicit form of D, so we have solved the problem in a way that the
book did not intend. Let us try solving the problem using a method that uses the explicit form of D.

D((x;x,y,z):(ZTr)3/20(3expl— (x2+y2+zz)
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Make a change of variables x — x — x', etc. (Otherwise we will not end up with the most general case.)

D((x;x—x',y—y',z—z'):(21'r)_3/20(_3 exp[— i((x—x‘)2+(y—y')2+(z—z')z)l

As o — 0, D will become zero unless x — x' approaches zero as well. In calculus, we remember that
x — x' approaching zero becomes dx. Therefore we have:

Dl x—x",y—y' z—z")=(21) ¥2a > exp[— ZL((dx)2+<dy)2+<dz)2)]
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We recognize the last part in parentheses as the incremental arc length element ds squared:

D(O(;x—x',y—y‘,z—z')=(21'r)3/20(3expl— 21 ZdSZ]
o



Expand the arc length in the new coordinate system:

2 2 2
D:(Qﬂs/zazexp[_ 1 (dL+d_V dl)
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Note that dx# du/U and we are not making that claim here. Rather, the entire three-dimensional
incremental arc length ds is the same in all orthogonal coordinate systems. Now expand the increments
back into differences:

<u—u'>2+<v—v'>2+<w—w'>2)
U2 V2 W2

D=(27)" exp[— ! > (
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Now make the substitution o — a;/U in the first bracket, a — a»/V in the second bracket, and o —
os/W in the last bracket. We can do this as long as we let a;, o, and a3 go to zero just like we were
letting a go to zero.
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We now let the alpha's approach zero. Each term in brackets on the right side becomes a one-

dimensional linear Dirac delta. The left side becomes the general expression for the three-dimensional
Dirac delta:

| 6(x—x'):6(u—u')6(v—v')6(w—w')'UVW|

Now this is a very useful result. Suppose we have a point charge. In spherical coordinates, we can find
the representation of its Dirac delta using the above expression. For spherical coordinates

u=r,v=0,w=d and the length elements are dr,rd 0, rsin 0d ¢ so that U=1, V:%, W=—

rsin 0

and

1

2 .
r°sin®

S(x—x")=8(r—r')5(6-0")5(dp—¢') (Spherical Coordinates)

Note that it is fairly straight-forward to prove using Dirac delta properties that
5(0—0")/sin0=5(cos0—cos0') so that the three-dimensional Dirac delta in spherical coordinates is
often written

§(x—x")=8(r—r")8(cos0—cos0')d (c[)—cl;')L2

as it is on p. 120 in Jackson.

Similarly in cylindrical coordinates, u=r,v=0,w=z and the length elements are dr,r d 0, dz so that



U=1,V=l, W=1 and
r

1
§(x—x")=8(r—r')5(0—-0" 6(2—2'); (Cylindrical Coordinates)

Assume that instead of a point charge, we have a line charge shaped into a ring, centered on the z axis,
located at some radius 7' and polar angle €'. The charge is distributed along the ring according to the
line charge density A(¢) . The total charge density in this case would be:

p=>8(u—u')d(v—v')UV N(w) (Spherical Coordinates)

d(r—r')6(0—0")N
p= (r=r") (r M) (Spherical Coordinates)




