

Dr. Christopher S. Baird, Fall 2012 University of Massachusetts Lowell

<u>1. Definitions</u>

 μ_0 **H**: The *applied* magnetic field plus interactions. μ_0 **M**: The *material response* magnetic field. **B**: The *total* magnetic field.

J: The *applied* current density. \mathbf{J}_{M} : The *material* current density $\mathbf{J}_{\text{total}}$: The *total* current density

2. Fundamental Equations to Understand and Memorize

$\mathbf{B} \!=\! \boldsymbol{\mu}_0 \mathbf{H} \!+\! \boldsymbol{\mu}_0 \mathbf{M}$	(total field = applied field + material response field)
$\mathbf{J}_{\text{total}} = \mathbf{J} + \mathbf{J}_{M}$	(total current density = applied current density + material current density)
$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}_{total}$	(total current gives rise to curling total field)
$\nabla \times \mathbf{H} = \mathbf{J}$	(applied current gives rise to curling applied field)
$\nabla \times \mathbf{M} = \mathbf{J}_{M}$	(material current gives rise to curling material response field)
$\nabla \times \nabla \Phi = 0$	(math identity: if a vector field has no curl, it is the gradient of a scalar potential)
$\nabla \cdot \mathbf{B} = 0$	(total magnetic field lines are not created or destroyed)
$\nabla \cdot \mathbf{H} = \rho_M$	(positive effective magnetic charge creates H field lines, negative destroys)
$\nabla \cdot \mathbf{M} = -\rho_M$	(negative effective magnetic charge creates H field lines, positive destroys)
$\nabla \cdot (\nabla \times \mathbf{A}) = 0$	(math identity: if a vector field has zero divergence, it is the curl of a vector field)
$\mathbf{B} = \mu \mathbf{H}$	(linear magnetic material have the applied and total fields linked by a constant)

3. Derived Equations: Potentials

5. Derived Equations: Boundary Conditions

 $\mathbf{v}_{\mathbf{n}\times(\mathbf{B}_2-\mathbf{B}_1)=\mu_0\mathbf{K}_{\text{total}}}$

 $\mathbf{\nabla} \times \mathbf{H} = \mathbf{J}$ $\mathbf{\nabla}$ \mathbf{V} \mathbf{N} \mathbf{N} \mathbf{N}

(using Amperian loop)

4. Derived Equations: Linear Materials

In regions of linear *uniform* material and $\mathbf{J} = 0$, we can show $\mathbf{J}_M = 0$, and therefore $\mathbf{J}_{\text{total}} = 0$. In free space (no magnetic materials), $\mathbf{M} = 0$, $\mathbf{J}_M = 0$, and therefore $\mathbf{B} = \mu_0 \mathbf{H}$ and $\mathbf{J}_{\text{total}} = \mathbf{J}$.