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1. Electrostatic Equations with Ponderable Materials
- We desire to find the electric fields of any system which includes materials. 
- We can consider a material to be a collection of small regions with a charge distribution. 
- Let us find the potential due to one of these charge distributions, then integrate over all charge 
distributions to get the total potential.
- We know that we can expand the potential due to a localized charge distribution into its 
mulitpole moment contributions and only keep the first few terms if we are far away. Because 
we will shrink the charge regions to a very small size when forming the integral, any point in 
space can be considered far away from the charge region.
- Consider a small volume dV  containing a charge density producing a potential dΦ expanded 
into multipole contributions:
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- Because the charge region is infinitesimal and we want a macroscopic expression, we are far 
enough away that terms become negligible except the monopole and dipole terms.
- We switch to absolute coordinates to allow us to add up effects at different locations. 
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- Multiply and divide by the volume dV:
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- By definition, the charge per unit volume is the charge density, dq
dV =ρ(x ') , and the average 

dipole moment per unit volume is the polarization, p
dV =P .
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- To get the total electric potential, we add up the effects of all the small charge regions. 
Mathematically, this means integrating both sides of the equation:
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- This is now the potential due to all charge regions in the material. Because we started very 



generally, it includes all materials (except materials where quadrupole moments, etc. are 
significant). The first term is just Coulomb's law with no materials telling us the potential due to 
the free/excess charges. The second term is the potential due to the material itself. Typically, an 
applied field induces the polarization P in the material, which then creates its own field.
- We want to combine the two terms.

- Use the mathematical identity:
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- Apply integration by parts to the second integral:
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- We are integrating over all space, so the bounding surface is at infinity where there is no 
material. This makes the first term vanish, so that:
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- Use this identity in the potential equation:
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- Collect terms:
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- This is just Coulomb's law for the total potential if we recognize the term in parentheses as the 
total charge density:
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- If we divide the rightmost equation directly above by ε0 it looks like Gauss's law in differential 
form:
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so that we can identify (-P/ε0) as the electric field caused by the polarization charge density.
- The quantity ρpol is the “polarization charge density”, or the “bound charge density”, or the 



“induced charge density”. It is the material's response to the fields.
- The quantity ρ is the “free charge density”, or more accurately the “excess charge density”, or 
the “inducing charge density”. It is the charge that is placed when the problem is created (e.g. 
charging up a balloon by rubbing it in your hair). This is the charge we have already dealt with.
- The quantity ρtotal is the total charge density, which is the sum of the bound and free charges.
- It should be noted that, because of the way it has been defined, the polarization (the average 
dipole moment density) P points in the opposite direction from the field due to the polarization: 

Material response electric field = (-P/ε0) 

- This is because the dipole moment of a charge region always points from its negative side to 
its positive side, whereas electric fields start on positive charges and end on negative charges.
- While possibly confusing, this definition is useful because dipoles are seen to line up with the 
applied field.
- All of our results from electrostatics without materials carry over now if we realize that we 
must use the total charge distribution ρtotal  when we seek the total field E.
- Gauss's law in differential form becomes:
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- The field E is the total field, and the quantity (-P/ε0) is the induced field, so that the last piece 
in the equation above is a field-like entity and can be loosely thought of as the original 
externally applied field plus interactions.
- Define this applied field as (D/ε0) where D is called the displacement. Because (D/ε0) is an 
electric-field-like entity it must obey its version of Gauss's Law:
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- Plugging this into the equation above:
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- Integrate both sides:

E=D /ϵ0−P/ϵ0



- This simple equation states that the total electric field E is the sum of the applied field plus 
interactions (D/ε0) and the resulting induced field (-P/ε0). While this statement is true, we must 
be careful about what we mean. The free charges and bound charges interact with each other so 
that they can end up in different locations than where originally placed. For this reason, D is 
more than just what the field would be in the absence of the material.
- All of the equation thus far apply to any ponderable material where the dipole moments are the 
dominant terms in the response of the material to the applied field.
- These equations are not particularly useful until an explicit model is developed allowing us to 
find the polarization P based on the material's static properties.

2. Electrostatic Equations in Linear Isotropic Dielectric Materials
- The simplest and and most common type of dielectric material is that of linear, isotropic 
dielectrics.
- The isotropic property means that the applied field will always give rise to the same induced 
field, no matter how the material is oriented.
- The linear property means that the induced field is linearly proportional to the applied field 
inducing it. In other words, the polarization P points in the same direction as the displacement 
D and the magnitude of the polarization equals some constant times the magnitude of the 
displacement:

P=
r−1
r

D

- The constant linking the two is chosen to have this form to simplify the final equations, as is 
shown below.
- The variable εr is known as the relative electric permittivity of a material, or its dielectric  
constant. It is defined relative to the permittivity of free space: r=/0 .
- Most materials have dielectric constants between 1 and 100.
- Vacuum has a dielectric constant of 1 by definition, so that there is no polarization in response 
the applied electric field.
- Silicon Dioxide (sand or quartz) has a dielectric constant of 3.7, so that the polarization has 
about 73% the strength of the displacement.
- Water at room temperature has a static dielectric constant of 80, so that the polarization is 99% 
the magnitude of the displacement. In other words, most of the applied electric field is canceled 
out by the responding polarization field. That is why radio wave cannot penetrate water. 
(Higher frequencies of light do penetrate water, but that is because light is really an 
electrodynamic and not an electrostatic phenomenon, which becomes more apparent at higher 
frequencies.)
- Now combine the linear material response equation with the electrostatic field equations.
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- Knowing this relationship for linear materials, we can simplify Gauss' Law for the 
displacement:

∇⋅D=x

∇⋅(ϵ E)=ρ(x)                                Gauss's Law in differential form inside a linear dielectric

- This equation applies everywhere, even if the material is nonuniform or we have many 
materials put together, as long as all of the materials are linear.
- If the material varies spatially, the permittivity may also vary spatially and can not be moved 
outside the divergence operator. The equation must be solved in this form.
- A special case is if the permittivity is uniform in a region and thus does not depend on 
position. 
- Then the permittivity can be moved outside the divergence operator:

∇⋅E=1
ϵ
ρ(x)                    Gauss's Law in differential form inside a linear uniform dielectric

- This equation states essentially that the divergence of the electric field E is equal to the 
constant effects of the material (1/ε) times the effect of the free charge density.
- Therefore, the greater the permittivity of the material (the more able the material is to be 
polarized), the less a charge density is able to create a total electric field.
- If the region containing the uniform dielectric material is taken to include all space, this 
equation applies everywhere. All the problems in such a medium reduce to the same problems 
done in previous chapters except the permittivity of free space ε0 is replaced by the permittivity 
of the material ε.
- If the problem involves a few different regions with different materials, but each material is 
linear and uniform, then this equation applies separately in each region. In such a case the 
different regions will need to be solved independently and connected by boundary conditions.

3. Boundary-Value Problems with Dielectrics
- The last equation above only applies to regions of uniform dielectric.
- However, this equation can still be used for problems with regions with different materials if 
each region of uniform dielectric is solved independently and then the solutions are forced to 
match up at the boundaries.
- The first boundary condition is found by drawing a pillbox around the surface in the usual 
way, but only including the free charge and thus applying the integral to only the applied field:

(D2−D1)⋅n12=σ



- Here n12 is the boundary surface normal pointing from region 1 into region 2.
- The second boundary condition is found by drawing a loop half-way in the surface:

(E2−E1)×n12=0

- Consider two semi-infinite regions of linear uniform dielectric material that meet at the x-y 
plane. 
- The material on the negative z side, in region 2, has a permittivity ε2 and the material on the 
positive z side, in region 1,  has a permittivity ε1.
- A point charge q is embedded on the z-axis a distance d from the origin in region 1.
- The equations to be solved are:

1 ∇⋅E1= for z > 0

2 ∇⋅E2=0 for z < 0

- The boundary conditions at z = 0 are:

1 E1, z=2 E2, z , and E1,r=E2, r for all θ in cylindrical coordinates

- Let us use the image method to solve for the field in region 1.

- We place an image charge q' at z = -d as shown in the image below:

- The potential in region 1 is just that felt by a point charge and its image. In cylindrical 
coordinates:
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- To solve for the field in region 2, we treat it as a separate problem and place an image charge 
q'' at z = d. There are no other charges involved (the actual charge q does not directly come into 
play in region 2 because of the way we have set up the problem) so that the solution is:
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- Now apply the boundary condition 1 E1, z=2 E2, z at z = 0:
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- Apply the boundary condition: E1,r=E2, r at z = 0:
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The two boxed equations can be solved in terms of the known charge q.
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- So that the final solution for the potential is:
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- Drawing a pillbox in the usual way, but only enclosing the polarization charge, leads to the 
boundary condition:

 pol=−P2−P1⋅n12 at z = 0

- For linear materials:
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4. Electrostatic Energy in Dielectric Media 

- As derived in a previous lecture, the electrostatic potential energy stored in a charge 
configuration in vacuum is given by:

W =1
2∫x xd x

- This equation can still be used in the presence of linear dielectrics if we think of assembling 
the free charge density ρ, where each piece interacts with the total potential Φ generated by the 
charge density, which includes the dielectric effects.
- The free charge density ρ gives rise just to the applied electric field (proportional to the 
displacement D) according to:

∇⋅D=x

so that we have:

W =1
2∫∇⋅Dd x

Integration by parts leads to:

W =−1
2∫D⋅∇ d x

The total potential is related to the total electric field according to E=−∇ . The energy is:

W =1
2∫E⋅D d x

For linear materials, E=1/ D so that we can cast the energy in the form:

W =ϵ
2∫∣E∣2 d x


