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1. The Laplace Equation in Spherical Coordinates
- In this coordinate system, r is the radial distance from the origin to the observation point, θ is 
the polar angle that the point makes with the z-axis, and ϕ is the azimuthal angle in the x-y plane 
relative to the x-axis.
- Spherical coordinates are useful when the boundary conditions have a spherical shape or 
symmetry.
- The Laplace equation in spherical coordinates:
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- Use the method of separation of variables by trying a solution of the form:
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Here an extra factor (1/r) is included to anticipate that the mathematics will be simplified if 
each factor has the same dimensionality.
- Substitute this into the Laplace equation:
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- This equation is complex enough that we can not make each term independent all at once. 
First, get Q in a form to show it is independent by multiplying by r 3sin 2/Rr P Q  :
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- Here the partial derivatives have become total derivatives because the functions they operate 
on are now functions of only one variable.
- The last term is now independent of ρ and θ, and must hold for all ρ and θ, so that it must 
equal a constant:
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- We can solve the second equation. First put it in a more intuitive form:

d 2 Q
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- Now the general solution is clearly:

Q(ϕ)=Am ei mϕ+Bm e−i mϕ if m ≠ 0 and Q(ϕ)=Am=0+Bm=0 ϕ if m = 0.

- The constant m is in general not necessarily an integer. If the region of interest includes the 
full azimuthal sweep of values, then m must be an integer to keep the solution single-valued and 
the case of m = 0 reduces to Q(φ) = Am=0. From here on, we are dealing with this special case, 
which is still quite general.

- We now turn to the rest of the equation:
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- Divide each side by sin2 :
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- The first term and the last terms are independent and can be set to a constant:
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- Put both each equations in more intuitive forms :
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- Put the second equation in a simpler form using: x=cos and
d
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- The first equation can be solved by trying R r =r 
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- So that general solution is:

R(r )=Al rl+1+Bl r−l which is valid for both l l1≠0 and l l1=0

- Before solving further, we can already see that the general solution (if the whole azimuthal 
sweep is included) will have the form:
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where Pl
m at this point has not been solved yet, but will be the solution to the differential 

equation above involving theta.
-There are two separation constants m and l, and there are thus four cases that may need to be 
handled separately. A quick check of the above shows that it properly handles three cases. The 
(m ≠ 0, l(l+1) = 0) case does not converge at x = 1 as we require and most be omitted.
- Solving the separated equation for the last spherical coordinate is involved and requires more 
detail as shown in the next section. We will take it in two steps. First we will solve it for the 
special case of m = 0 to get a feel for what the solution will be, then later we will move on and 
solve it for all m.

2. Ordinary Legendre Polynomials (  m   = 0)  
- Solving for the P  part of the potential is complex enough that we will take the special case
m = 0 first and then treat the m ≠ 0 case in a later lecture.
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- Remove the first two powers of x and then combine the same powers in one sum:
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- This must hold for all values of x, thus each power in the sum must be zero:
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- The third equation is solved to yield the recurrence relation, which gives us all remaining 
terms from the first one:
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- The first two equations are redundant, so that we can permanently choose a1=0 . According to 
the recurrence relation above, these means that all aodd = 0. We can write the series now as:
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- To satisfy the recurrence relations, we are left with two cases, α = 0 or α = 1.
- Depending on l, it is evident that Pl(x) is either an odd series expansion or an even series.
- The solution only converges for x = 1 if the series is finite. The series will only have a finite 
number of terms if the coefficient in the recurrence relation at some point equals zero:
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- We apply our two cases:

- If α = 0:  j max jmax1−l  l1=0 with the solution jmax=l , and plugging in:
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- We can rewrite the sum over even integers as a sum over all integers if we double the indices:
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- Rewrite the sums over even integers as a sum over all integers by doubling the indices:
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- We can explicitly show the solution for low values of l where the equations are simple:
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- The overall scale factor a0 is arbitrary for each case and is conventionally set so that P l(1)=1
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- We should remember that x is just a placeholder for cos θ in our analysis, so we really have:
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- Legendre Polynomials have the following mathematical properties (the derivations are left as 
exercises for the curious student).

- Odd or even symmetry about the origin: P l(−x )=(−1)l P l( x)

- Rodrigues' Formula: P l x= 1
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- Recurrence Relations: P l1 x=2 l1
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l1

P l−1 x

and: P l x= 1
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- Note that the Legendgre polynomials are not defined for negative l, so that the above 
equations cannot be used to expand P0(x). When solving problems, this typically means that we 
have to solve the l = 0 term separately from the l > 0 terms.

- The orthogonality condition: ∫
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- Note that the above orthogonality statement is only valid if the limits on the integral are zero 
and π. If you come across an integral with different limits, you cannot use the orthogonality 
statement to solve the integral.
- The Legendre Polynomials form a complete set of orthogonal functions on the interval (-1, 1), 
so any function f(x) and be expanded in terms of Legendre Polynomials:
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- The general solution to the Laplace Equation in spherical coordinates for the special case of 
(m = 0) has now been solved (when both poles require a finite solution):
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3. The Laplace Equation Solution for Problems with Azimuthal Symmetry
- If the condition m = 0 is met and if the region of valid solution includes the entire 2π radian 
sweep of  , then the problem is said to have azimuthal symmetry. The solution above applies 
to any problem where the boundary conditions and do not depend on the azimuth angle, but are 
uniform in this direction.
- As an example, consider a sphere of radius a with the potential V(θ) on its surface and we wish 
to find the potential everywhere inside the sphere.
- Because the region of valid solution includes the origin, the constants Bl = 0 to keep the 
solution from blowing up, leading to:
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- Apply the boundary condition: r=a ,=V 
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- Multiply both sides by P l 'cos sin and integrate over theta from 0 to π:
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- Now use the orthogonality condition: ∫
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- Thus the final solution is, in a form more intuitive: 
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- Consider two hemispherical shells of radius a where the bottom half is held at zero and the top 
half is held at a fixed potential V.
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- Make the substitution x=cos :
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- We have to be careful to do the l = 0 case separately, as is typical in this type of problem.
- For l = 0, we have:
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- For l > 0, we use the relation P l x= 1
2 l1

d
dx [P l1 x−P l−1x] to find:

Al=
2 l1

2
V ∫

0

1

P l x dx

Al=
1
2

V [P l1x −P l−1 x]0
1

Al=
1
2

V [−P l10P l−10]

- So that the final solution is:
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- If r is much less than a, we can just keep the first few non-vanishing terms:
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- Using graphing software, it is easy to plot these first four terms, as shown below. 
- The plot demonstrates that even just keeping the first four terms gives a potential that meets 
the boundary conditions approximately, although it is obvious that accuracy is lost at certain 
points near the surface, when r is close to a.
- Many similar problems with azimuthal symmetry can be solved in the same way.



4. Unit Point Charge Potential Expansion in Legendre Polynomials.
- As we discovered when dealing with Green functions, the potential due to a point charge of 
unit magnitude (q = 4πε0) is a very useful building block. If we expand it in Legendre 
polynomials, we may be able to use it in these types of problems.
- Consider a unit charge placed on the z-axis. The potential felt at r from the unit charge at r0 on 
the z-axis is:
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- The potential is obviously azimuthally symmetric and can thus be expressed in terms of 
Legendre polynomials:
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- To find the coefficients Al and Bl, we note that this equation must hold for all θ, so we can 
simplify the problem by picking a certain θ. Picking θ = 0 yields:
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- For rr 0 (the observation point is closer to the origin than the charge):
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- Multiply by r0:
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- Expand the left side using the geometric series rule:
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- It is now obvious that Bl = 0 and every term must match, leaving:
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- Plugging this in gives us the final expansion:
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- For rr 0 (the observation point is further away from the origin than the charge):
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- Again expand the left into a geometric series:
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- Now Al = 0 and every term must match:
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- Plugging this in gives us the final expansion:
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- Strictly speaking, the point charge expansion shown above in boxes is only valid for a point 
charge on the positive z axis. But we can get an expression that is valid for a point charge on the 
negative z axis, if we substitute θ with (π – θ) because of the symmetry:
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- Using the property P l(−x )=(−1)l P l( x) , we finally have
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- Similarly, we can show:
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- As an example of the usefulness of this expansion, consider a dipole where a charge q is 
located at z = a and -q is located at z = -a. 
- The potential created by this dipole is:
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- For points far away from the origin and the charges:
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- For very large r (or very small a, remembering that a perfect dipole is when a approaches 
zero) the potential can be approximated as the first term in this series:

r≈ q
4 0

2a
r 2 cos

- If we define the dipole moment as the charge times the separation: p=q2 a then the 
potential of a dipole takes on the familiar form:

r≈ 1
4 0

p⋅r
r3

where the approximately equal sign becomes an exactly equals sign for perfect dipoles.

5. Fields in a Conical Hole
- The Legendre polynomials form part of the solution to the Laplace equation if there is 
azimuthal symmetry and if the region where we must have a valid solution includes both poles 
x = ±1 (θ = 0, π).
- What if there is azimuthal symmetry but the region of interest includes only the north pole, 
x = 1?
- Consider a conical hole in a conductor that has an angle β relative to its axis.
- In spherical coordinates, the boundary conditions are:

Φ(r=0)=finite, Φ(θ=0)=finite, Φ(θ=β)=0 , Φ(0)=Φ(2π)

- The boundary condition outside the hole is unknown so we cannot find a unique solution, but 
we can get a solution that is specific enough to describe the basic behavior of the fields in a 
conical hole.
- All of the pieces of the general m = 0 solution derived in the previous sections still hold except 
that Pl(x) are now not the Legendre polynomials but are something else. Let us find them and 
label them Pv(x) to avoid confusion.
- The Legendre equation was found to be (where x = cos θ):

d
dx [(1− x2)

d P( x)
dx ]+ν(ν+1) P (x )=0

- When both poles were included there was a symmetry which lead us expand in a series 
solution about the midpoint x = 0 (θ =  π/2 ).
- But now only one pole is included, so the symmetry is lost. It will be cleaner now to expand in 
a series solution about the pole x = 1 (θ = 0).
- For this reason, we make a change of variables:
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- The Legendre equation becomes:
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- As done in the previous sections, try a series solution of the form:
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- Substituting this into the equation we find:
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- The set of functions in the series is orthogonal so each coefficient must vanish separately, 
leading to:

a0 α
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- If we choose a0 = 0 we will have no series, so we are forced to identify α = 0, which leads to:

a j+1=a j
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- As a normalization, we choose a0 = 1
- The final solution becomes:
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Pν( x)=1+(−ν(ν+1))[ 1
2
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- Note that we have not applied any boundary conditions yet so this solution is very general.
- If we apply the boundary condition of finite potential at both poles as done in the previous 
section, this forces υ to equal a positive integer and this general solution reduces down to the 
ordinary Legendre polynomials as it should to match the results of the previous section.
- For υ not equal to a positive integer, we can get solutions to other cases.
- By applying azimuthal symmetry and the finite potential requirement at the origin, our 
potential solution takes the form:

Φ(r ,θ ,ϕ)=∑
ν=0

∞

Aν rν P ν(cosθ)

- Apply the boundary condition Φ(θ=β)=0 :

Pν(cosβ)=0

- Only certain υ = υk will make this equation hold true. Unfortunately, they have to be found 
numerically for a certain β. Once found, the solution becomes:

Φ(r ,θ ,ϕ)=∑
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(cosβ)=0

and Pν( x)=1+(−ν(ν+1))[ 1
2
(1−x)]+−ν(ν+1)(2−ν(ν+1))

4 [ 1
2
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+...

- This is as far as we can get without knowing the fields outside the hole. But this is still enough 
to show general trends deep inside the hole.
- Deep within the hole, near r = 0, the first term in the series solution will dominate so the other 
terms can be dropped:

Φ(r ,θ ,ϕ)=Ar ν1 Pν1
(cosθ)

- Therefore all the electric field components and the surface charge density vary radially as:

r ν1−1

- For small β (conical holes), υ1 approaches the value ν1=
2.405

β
−1

2

- For large β (conical points), υ1 approaches the value ν1=[2 ln( 2
π−β)]

−1

- Therefore the electric field and surface charge density varies as:

r ^[ 2.405
β

−3
2 ] for conical holes and r ^[[2 ln( 2

π−β)]
−1

−1] for conical points



- For instance the electric field inside a 45 degree conical hole is E∝r1.56 .
- This means the field is steadily getting stronger the more we come out of the hole.
- For a narrow conical hole, such as with a 10 degree angle, we have E∝r12.3 .
- This means that if we measure a field strength of 1 V/m near the mouth of the hole, than half 
way into the hole the field strength will be 2-12.3 V/m or 0.0002 V/m and three-quarters of the 
way into the hole the field strength will be 0.00000004 V/m.
- In general we may say that electric fields are very weak deep inside narrow holes

- For a 45 degree conical point (β = 135 degrees) we find E∝ 1
r0.47

- For a 10 degree conical point (β = 170 degrees) we find E∝ 1
r0.79

- For even sharper points, the field strength approaches the value E∝ 1
r so that if you go ten 

times closer to the point, the field strength gets ten times as strong.



Electric field strength near conical holes or conical points as a function of distance from the apex. 
All curves are normalized to have the same field strength at some fixed distance R from the apex.


