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1. Orthogonal Functions and Expansions
- In the interval (a, b) of the variable x, a set of real or complex functions Un(x) where 
n = 1, 2, ... are orthogonal if: 

∫
a

b

U n *x U m xdx=0, m≠n

- When m = n, the integral is nonzero. The functions are orthonormal if normalized to one:

∫
a

b

U n *x U m xdx= nm

- An arbitrary, integrable function f(x) can be expanded in a series of the orthonormal functions 
Un(x) according to:

f x =∑
n=1

N

an U n x

- To find the expansion coefficients an, we multiply both sides by the function U*
M(x), integrate, 

and use the orthonormality property:

f x U m
* x=∑

n=1

N

an U nx U m
*  x

∫
a

b

f x U m
* x dx=∑

n=1

N

an∫
a

b

U nx U m
*  xdx

∫
a

b

f x U m
* x dx=∑

n=1

N

annm

∫
a

b

f x U m
* x dx=am

- Interchange the arbitrary label m for n and get the final form:

f (x )=∑
n=1

N

anU n( x) where an=∫
a

b

f ( x)U n
*(x )dx                        Finite Series Expansion



- If the functions form a complete set, and all functions that are useful in physics do, then the 
series expansion becomes a more accurate representation of the function f(x) as more terms in 
the series are kept. The most accurate is the infinite series:

f (x )=∑
n=1

∞

anU n( x) where an=∫
a

b

f ( x)U n
*(x )dx                        Infinite Series Expansion

- If the interval (a, b) is expanded to be infinite, than the orthogonal functions become a 
continuum of functions, the index variable n becomes a continuous variable k, and the 
orthogonality condition becomes normalized to the Dirac delta function:

∫
−∞

∞

U k *x U k 'xdx= k−k '

f (x )=∫
−∞

∞

A(k )U k (x )dk where A(k )=∫
−∞

∞

f (x )U n
*( x)dx  Infinite Continuous Expansion

2. Fourier Series
- The most commonly used orthogonal functions are sines and cosines, constituting Fourier 
series.
- Start with a general expansion in terms of sines and cosines over the interval (-a/2, a/2):

f x =∑
n=0

∞

An cos k n xBn sink n x

- In order for the series to be a valid representation of the function in the interval, the series 
must be periodic outside the interval, so that f(-a/2) = f(a/2). Using this requirement leads to:

∑
n=0

∞

Ancos kn −a /2−cos k na / 2Bnsink n−a /2−sin k n a /2=0

- This must be true independent of An and Bn, so that the coefficients must be zero:

sin k n−a /2−sink n a/ 2=0

sin k n a /2=0  k n a /2=n

k n=
2n

a

The series now becomes:

f x =∑
n=0

∞

An cos2 n x
a Bn sin2 n x

a 



To find the coefficients, multiply both sides by cos2m x
a where m is an integer and integrate 

over the interval (-a/2, a/2):
 

∫
−a/2

a /2

dx f  xcos2m x
a =∑

n=0

∞

An ∫
−a /2

a /2

cos2m x
a cos2 n x

a dxBn ∫
−a /2

a /2

cos2m x
a sin 2 n x

a dx

- The first integral on the right is zero, except when m = n due to orthogonality, and the second 
integral is always zero. 

∫
−a/2

a /2

dx f  xcos2m x
a =Am ∫

−a /2

a /2

cos22m x
a dx

- Use integration by parts to solve the integral on the right and finally after relabeling:

An=
2
a ∫−a /2

a /2

f x cos2n x
a dx

- The same approach is repeated, multiplying both sides by sin2m x
a and integrating:

Bn=
2
a ∫−a /2

a/2

f x sin 2 n x
a dx

- In summary, any function on the interval (-a/2, a/2) can be expanded in a Fourier series:

f (x )=∑
n=0

∞

An cos(2πn x
a )+Bnsin(2π n x

a )
where An=

2
a ∫−a /2

a /2

f ( x)cos(2πn x
a )dx and Bn=

2
a ∫−a /2

a /2

f ( x)sin(2πn x
a )dx

- A more useful form of the Fourier series is in terms of complex exponentials:

f (x )= 1
√a ∑n=−∞

∞

An ei (2π nx /a ) where An=
1
√a ∫−a/2

a /2

f ( x ')e−i (2πn x '/a )dx '

- Because the summation index now spans negative infinity to positive infinity instead of just 
zero to positive infinity, both terms e+ikx and e-ikx have been combined into one term. Sometimes 
it is more useful to leaves the terms separate.
- If the interval becomes infinite (a → ∞), the series becomes an integral of a continuum of 
functions. There is now no restriction on kn, so it is just k: 

f x =∫
−∞

∞

Ak e i k x dk



- Multiply both sides by e−i k ' x and integrate:

∫
−∞

∞

f x e−i k ' x dx=∫
−∞

∞

Ak ∫
−∞

∞

e−i k ' x e i k x dx dk

- Using the orthogonality of complex exponentials: ∫
−∞

∞

e i(k−k ') x dx=2πδ(k−k ')

Ak = 1
2 ∫−∞

∞

f xe−i k x dx

- More often, the constant An is redefined to
1
2

An to make the equations symmetric:

f (x )= 1
√2π ∫−∞

∞

A(k )ei k x dk  where A(k )= 1
√2π ∫−∞

∞

f (x )e−i k x dx              Fourier Integral

3. Separation of Variables: Laplace Equation in Rectangular Coordinates
- Often a differential equation can be broken into a set of independent equations.
- The Laplace equation ∇2=0 is used when a charge-free region is bounded by a boundary 
where the potential is known. In rectangular coordinates:

∂2
∂ x 2

∂2
∂ y 2

∂2
∂ z2 =0

- Try a solution of the form: x , y , z =X x Y  yZ  z 

Y ( y)Z (z ) ∂
2 X ( x)
∂ x2 +X (x)Z ( z) ∂

2Y ( y)
∂ y2 +X (x )Y ( y) ∂

2 Z ( z)
∂ z2 =0

- Divide each side by X xY  y Z  z 

1
X x 

d 2 X x
d x2  1

Y  y 
d 2 Y  y 

d y2  1
Z  z 

d 2 Z  z 
d z2 =0

- Total derivatives have replaced partial derivatives because the functions are of only one 
variable.
- This equation must hold for all possible values of the independent coordinates, therefore the 
terms must be independent. Each can be set to an arbitrary constant:

1
X x 

d 2 X x
d x2 =−2 , 1

Y  y 
d 2Y  y 

d y 2 =−2 , 1
Z  z 

d 2 Z  z 
d z2 =2 where 22=2

- Simplify the equations:



d 2 X  x
d x 2 =−2 X x  , d 2 Y  y 

d y2 =−2Y  y  , d 2 Z  z 
d z2 = 2 Z  z 

- And find the solutions:

X ( x)=A e iα x+B e−iα x , Y ( y)=C e iβ y+D e−iβ y , Z ( z)=F eγ z+G e−γ z

X ( x)=A+B x if α=0 , Y ( y)=C+D y if β=0 , Z ( z)=F+G z if γ=0

- The particular solution for non-zero constants is:

x , y , z =X x Y y Z  z 

Φ( x , y , z )=(Aαβeiα x+Bαβe−iα x)(Cαβe iβ y+Dαβe−iβ y)(F αβeγ z+Gαβe−γ z) if α ≠ 0 and β ≠ 0

- The particular solutions for when the constants may be zero are:

Φ( x , y , z )=(A0β+B0β x)(C 0βe iβ y+D0βe−iβ y)(F 0β eβ z+G0βe−β z) if α = 0 and β ≠ 0
Φ( x , y , z )=(Aα 0e iα x+Bα0 e−iα x)(Cα 0+Dα 0 y )(F α0 eαz+Gα0 e−α z) if α ≠ 0 and β = 0
Φ( x , y , z )=(A00+B00 x)(C 00+D00 y)(F γ=0+G00 z ) if α = 0 and β = 0

- The general solution is the sum of all possible particular solutions:

Φ( x , y , z )=∑
α≠0
∑
β≠0
(Aαβeiα x+Bαβe−iα x)(C αβe iβ y+Dαβe−iβ y )(Fαβ eγ z+Gαβe−γ z)

+∑
β≠0
(A0β+B0β x )(C0β eiβ y+D0βe−iβ y)(F 0βeβ z+G0βe−β z)

+∑
α≠0
(Aα0 ei α x+Bα0 e−iα x)(C α0+Dα0 y)(F α0 eα z+Gα0 e−α z)

+(A00+B00 x)(C 00+D00 y)(F 00+G00 z)

- This is the most general solution possible. Most geometries are simple enough that most of 
these terms drop out.
- Let us now discuss differential equations in general. 
- A derivative equation such as d y

d x=2 only specifies the solution up to an arbitrary constant. In 
this case y = 2x + C. We must have an additional piece of information, a boundary condition, to 
specify a unique solution to the derivative equation. In this case, if we know y(1) = 4, then we 
find the unique solution to be y = 2x + 2.
- A differential equation is just a combination of derivatives and functions.
- For every derivative in a differential equation, the solution will have one integration constant, 
and there must be one boundary condition to specify it.
- The Laplace equation in three-dimensions has a second-order derivative (which is really just a 
derivative applied twice) in each dimension, for a total of six derivatives. This means that for a 
particular solution, there will be six constants, and we need six boundary conditions to specify 
these constants. The six boundary conditions are just the value of the potential on the six sides 
of the box containing the volume of interest.
- Looking at the most common particular solution to Laplace's equation in three-dimensional 



rectangular coordinates, it would seem that we have more than six constants:

Φ( x , y , z )=(Aαβeiα x+Bαβe−iα x)(Cαβe iβ y+Dαβe−iβ y)(F αβeγ z+Gαβe−γ z)

- But in reality, many of the constants can be combined and also γ is a function of the others 
constants:

Φ( x , y , z )=Aαβ(e
iα x+Bαβe−iα x)(e iβ y+Dαβe−iβ y)(e√α

2+β2 z+Gαβe−√α
2+β2 z)

- It is a good practice when approaching a problem to write down the number of constants, 
identify them, and write all of the boundary conditions.

4. Example of Rectangular Boundary Conditions for Charge-Free Regions
- Consider for simplicity a box with one corner at the 
origin and the opposite corner at the point (a, b, c) in 
the (x, y, z) dimensions, where the potential is 
everywhere zero on the surface of the box except at 
the z = c surface where:

x , y , z=c=sin  x
a sin y

b 
- The other five boundary conditions are the five 
other sides of the box held at zero.
- A careful analysis leads us to see that all the zero-
potential sides force all particular solutions to 
disappear except the most common ones:

Φ( x , y , z )=∑
α≠0
∑
β≠0
(Aαβe iα x+Bαβe−iα x)(C αβe iβ y+Dαβe−iβ y )(Fαβ eγ z+Gαβe−γ z)

- Now we apply all boundary conditions one by one:

x=0, y , z =0

0=∑
α≠0
∑
β≠0
(Aαβ+Bαβ)(C αβe iβ y+Dαβe−iβ y )(Fαβ eγ z+Gαβe−γ z)

- This is only true for all y and z if Aαβ+Bαβ=0 , or Bαβ=−Aαβ .
- The solution is now: 

Φ( x , y , z )=∑
α≠0
∑
β≠0

Aαβ (e
iα x−e−iα x)(C αβe iβ y+Dαβe−iβ y )(Fαβ eγ z+Gαβe−γ z)

Φ( x , y , z )=∑
α≠0
∑
β≠0

Aαβsin (α x )(Cαβe iβ y+Dαβe−iβ y)(F αβeγ z+Gαβe−γ z)

- Next apply the boundary condition x=a , y , z =0 :



0=∑
α≠0
∑
β≠0

Aαβsin(αa)(C αβeiβ y+Dαβe−iβ y)(Fαβe γ z+Gαβe−γ z)

- This is only true for all y and z if a=n where n=0,1,2,... so that the solution becomes:

Φ( x , y , z )=∑
n≠0
∑
β≠0

Anβsin(nπ x
a )(Cnβe iβ y+Dnβe−iβ y )(F nβe γ z+Gnβe−γ z)

- The exact same process occurs in the y dimension, yielding:

Φ( x , y , z )=∑
n≠0
∑
m≠0

Anm sin( nπ x
a )sin(mπ y

b )(F nm eγ z+G nm e−γ z) where n , m=0,1,2,...

- With α and β determined, γ has been determined: 

=22  = n22

a2 m22

b2  = n2/a2m2 /b2

- Next apply the boundary condition x , y , z=0=0 :

0=∑
n≠0
∑
m≠0

An m sin(nπ x
a )sin(mπ y

b )(F n m+Gn m) and thus Gn m=−F n m , yielding:

Φ( x , y , z )=∑
n≠0
∑
m≠0

Anm sin( nπ x
a )sin(mπ y

b )sinh (π√ n2/a2+m2/b2 z )

- Apply the last boundary condition: x , y , z=c=sin  x
a sin y

b 
sin(π x

a )sin(π y
b )=∑n≠0

∑
m≠0

Anmsin( nπ x
a )sin(mπ y

b )sinh(π√n2/a2+m2/b2 c)

- The only term of the series expansion that is needed to represent the left side of the equality is 
the n = 1, m = 1 term, reducing the equation to:

1=A1,1sinh (π √1/a2+1/b2 c)

which uniquely determines the final coefficient:

A1,1=
1

sinh 1/a21 /b2 c 

- The final solution to this example is:



Φ( x , y , z )=
sin(π x

a )sin(π y
b )sinh (π√1/ a2+1/b2 z )

sinh (π√1/a2+1/b2 c )

- We can make the case more general by supplying the arbitrary boundary condition: 

x , y , z=c=V x , y 

- Then the previous analysis still follows, except now the last boundary condition requires:

V ( x , y)=∑
n≠0
∑
m≠0

Anm sin(nπ x
a )sin(mπ y

b )sinh (π√n2 /a2+m2/b2c )

- The boundary value function V is being expanded in a Fourier series with coefficients:

An msinh (π√n2/a2+m2/b2c )

- As was done with the general Fourier series, we solve for the coefficients by multiplying both 
sides by sines of x and y and integrating, so that the orthogonality picks out coefficients:

An msinh (π√n2/a2+m2/b2c )= 4
a b∫0

a

dx∫
0

b

dyV ( x , y)sin(nπ x
a )sin(mπ y

b )
An m=

4
a bsinh (π√n2/ a2+m2/b2 c)

∫
0

a

dx∫
0

b

dyV ( x , y)sin(nπ x
a )sin(mπ y

b )
- So that the general solution is:

Φ( x , y , z )=∑
n≠0
∑
m≠0

An , msin( nπ x
a )sin(mπ y

b )sinh (π√n2/a2+m2/b2 z )

where An m=
4

a bsinh (π√n2/ a2+m2/b2 c)
∫
0

a

dx∫
0

b

dyV ( x , y)sin( nπ x
a )sin(mπ y

b )



5. The Laplace Equation in Polar Coordinates
- If the boundary conditions of a charge-free region exhibit uniformity in one dimension and a 
circular shape in the other two dimensions symmetry, it is much more natural mathematically to 
use polar coordinates rather than rectangular coordinates.
- If the boundary conditions are uniform in the z-dimension, the three-dimensional cylindrical-
coordinates problem reduces to a two-dimensional polar-coordinates problem.
- Just like was done for rectangular coordinates, separation of variables and Fourier series can 
be used to solve the Laplace equation in polar coordinates.
- The two-dimensional Laplace equation in polar coordinates is given by:

∇2=0  1

∂
∂  ∂∂  1

2
∂2
∂2=0

- We use the separation of variables approach by trying a solution of the form:

 ,=R  

- Substituting it in:

  ∂
∂  ∂ R

∂ R 1
2
∂2 
∂2 =0

- Multiply by 2

R 
and bring one term to the right:


R

∂
∂  ∂R 

∂ =− 1
 

∂2 
∂2

- The two terms are separately functions of two independent variables and must hold for all 
values of the two independent variables, so they must be related by a constant, which we call υ2.


R

∂
∂  ∂R 

∂ =2 and  2=− 1
 

∂2 
∂2

- Put each in an instructive form:

 ∂
∂  ∂R 

∂ =2 R and ∂2 
∂2 =−2 

- The general solution for ≠0 is now apparent:

R=a
b

− and  =Ae i B e−i

- So that the general solution to the Laplace equation in polar coordinates for ≠0 is:

 ,=R  



 ,=∑

ab 

− Ae i Be−i 

- If =0 , the differential equations become:

 ∂
∂  ∂R 

∂ =0 and ∂2 
∂2 =0

with the general solutions for =0 :

R=a0b0 ln  and A0B0

- So that, finally, the most general solution becomes:

Φ(ρ ,ϕ)=(a0+b0 lnρ)(A0+B0ϕ)+∑
ν≠0

(aνρν+bνρ
−ν)(Aνe iν ϕ+Bνe−iνϕ)

- The coefficients are now determined by applying boundary conditions and recognizing the 
result as a Fourier series expansion.
- Because the z dimension is uniform and is therefore ignored, we have solved a second-order 
differential in two dimensions, so there should be four total integration constants and four 
boundary conditions. If we take the most common particular solution and combine constants, 
we find this to be the case:

P  ,=a b 
− e i B e−i

- Note that υ is only an integer if the region of interest where we are trying to solve for the 
potential includes all possible azimuthal angles, or in other words if there is no physical 
boundary condition at some fixed azimuthal angle. Otherwise, υ is not an integer. This means 
that the requirement that the potential be single-valued, Φ(ρ ,ϕ)=Φ(ρ ,ϕ+2π) , is only valid if 
the full sweep of possible azimuthal angles is included in the region of interest.

6. The Laplace Equation with   z  -Uniform Cylindrical-Shell Boundaries  
- Consider a cylindrical shell of radius ρ0 with a potential
of V(φ) on the shell. We are seeking the potential inside the shell.
-  Because the region of interest involves the full sweep
of φ, to keep φ single-valued we must require:

Φ(ρ ,ϕ)=Φ(ρ ,ϕ+2π)

- This condition is not true for geometries for which the region
where a valid potential is required does not span all possible
values of φ.
-In this geometry, the single-valued requirement leads to:

a0b0 lnA0B0∑
 ,≠0

ab
− Ae i B e−i

x

y

z

ρ
0



=a0b0 lnA0B02∑
 , ≠0

ab 
− Ae i 2B e−i 2 

- Because the variables are independent, every term in the series must match, leading to:

B0=0

as well as:

e i =e i2 which is only possible if ν=m  where m  is an integer: m=0,1,2,. ..

- The solution now becomes:

 ,=a0b0ln∑
m=1

∞

am
mbm

−mAm ei mBme−i m

- Because the region of interest includes the origin, the potential must be finite at the origin. 
Thus bm = 0 and b0 = 0, to keep those terms from blowing up at the origin. This reduces the 
solution to:

 ,=∑
m=0

∞

mAm e i mBm e−i m where the a0 term has now been included in the sum.

- The index m can be made to run from negative infinity to positive infinity, thus covering both 
terms:

 ,= ∑
m=−∞

∞

Am
∣m∣e i m

- Now apply the boundary condition: =0,=V 

V =∑
m=−∞

∞

Am0
∣m∣e i m

- Multiply both side by a complex exponential, integrate, and use the orthogonality of 
exponentials to find:

 ,= ∑
m=−∞

∞

Am
∣m∣e i m

 where Am=
1

2π
ρ0
−∣m∣∫

−π

π

V (ϕ ')e−i(mϕ ')d ϕ '

- Or, written in a more intuitive form:

Φ(ρ ,ϕ)= ∑
m=−∞

∞

Am( ρρ0)
∣m∣

ei mϕ  where Am=
1

2π∫−π
π

V (ϕ ')e−i(mϕ ' )d ϕ '

- Although this example only considered one cylindrical shell, the same approach is used to 
solve for boundary conditions on multiple cylindrical shells.



7. The Laplace Equation with Intersecting Planes
- Next consider two planes that intersect, one on the x-axis, the
other plane at an angle β from the first plane, and both uniform
in the z dimension, with boundary conditions:

  ,=0=V ,  ,==V , =0,=V 1

- This is also applicable to the edge of a more complex problem,
where the charges and other surfaces are far enough away that
they only come into play in that they create the boundary
condition at ρ0, thus the Laplace equation still applies.
- As before, inclusion of the origin in the region of interest
leads to bυ = 0, including b0 = 0:

 ,=A0B0 ∑
 , ≠0

 A ei Be−i 

- Apply the boundary condition  ,=0=V

V=A0 ∑
 ,≠0

 AB

- Which is only possible if A0=V , A=−B so that the solution now becomes:

 ,=VB0 ∑
 , ≠0

B 
 sin 

- Apply the boundary condition  ,==V :

V=VB0 ∑
 , ≠0

B 
 sin  

0=B0 ∑
 ,≠0

B 
 sin  

- This must be valid for all ρ, requiring B0=0 and ν=mπ/β where m=0,1,2,... , yielding:

 ,=V∑
m=1

∞

Bm
m / sinm/

- Note that ν is not equal to an integer in this case, but is equal to =m/  because we have 
physical boundaries at certain azimuthal angles.
- Apply the final boundary condition, which is typically dependent on the charge far away:

=0,=V 1

V 1=V∑
m=1

∞

Bm0
m/ sinm/

x

y

(ρ, φ)

β



V 1−V=∑
m=0

∞

Bm0
m/ sin m/ 

- Multiply both sides by sin n/ and integrate both sides from 0 to β:

∫
0



dV 1−V sin n/=∑
m=0

∞

Bm0
m /∫

0



dsin m/sinn/

- Due to orthogonality, the integral on the right is always zero, except when m = n:

∫
0



dV 1−V sin n/=Bn0
n /∫

0



d sin2n/

- The integral on the right evaluates to /2 :

Bn=
2
 0

−n /∫
0



d V 1−V sin n/

- The final solution then takes the form:

Φ(ρ ,ϕ)=V+∑
m=0

∞

Bmρ
mπ/βsin(mπϕ/β) , Bm=

2
β
ρ0
−mπ/β∫

0

β

d ϕ(V 1(ϕ)−V )sin (mπϕ/β)

- Let us get a sense of the general behavior of the potential near the edge. In the series 
expansion, we keep only the fist non-zero term, m = 1:

Φ(ρ ,ϕ)=V+B1ρ
π/βsin(πϕ/β)     near ρ=0

- The electric field, E=−∇ , is calculated in polar coordinates:

E=−[ρ̂ ∂∂ρ+ϕ̂ 1
ρ
∂
∂ϕ ][V+B1ρ

π/βsin (πϕ/β)]

E=
−π B1

β
ρπ/β−1(ρ̂ sin(πϕ/β)+ϕ̂ cos(πϕ/β))

- The surface charge densities at ϕ=0  and ϕ=β are:

= [0 E⋅n ]surface  =0 E ,=0⋅

σ(ρ)=−
ϵ0π B1

β
ρπ/β−1



Numerical Plots of surface charge densities for various angles, higher densities in darker blue.

8. Finite Element Analysis
- Often the Poisson equation cannot be solved analytically. Instead we must solve the problem 
numerically. Finite Element Analysis is one useful numerical method.
- This approach has three foundational ideas:

1. Expand the electric potential's solution into a series sum over a set of simple 
orthogonal functions ϕi so that we can calculate the derivatives of the known functions 
instead of the unknown electric potential. Note that this is a simple one-dimensional set 
of functions, but that it spans two or three-dimensional space.
2. Set up the problem so that it becomes a linear algebra problem, because computers 
can calculate this type of problem relatively quickly.
3. Choose expansion functions that are localized to different points in space (“finite 
elements”) so that the matrix ends up sparse and can be calculated much more quickly.

- Consider the Poisson equation in two dimensions valid in a region bounded by known 
Dirichlet boundary conditions:

∇2ψ=−g  where g=ρ/ϵ0

- Bring everything to the same side:

∇2ψ+g=0

- Multiply everything by the test function so that we have it there to work with:

ϕi∇
2ψ+ϕi g=0



- Integrate this equation over the entire surface region S so that we have something that looks 
like Green's first identity:

∫S
[ϕi∇

2ψ+ϕi g ]da=0

- Green's first identity for two-dimensions is:

∫S
(ϕ∇ 2ψ+∇ϕ⋅∇ ψ)d a=∮C

ϕ
∂ψ
∂ n

d l

- We are assuming Dirichlet boundary conditions so that the derivative of the potential along the 
boundary (Neumann boundary conditions) can be set to zero making the right side of this 
equation go away.

∫S
(ϕ∇ 2ψ+∇ϕ⋅∇ ψ)d a=0

∫S
ϕ ∇2ψd a=−∫S

∇ϕ⋅∇ψd a

- Apply this to the Poisson equation to obtain:

∫S
[−∇ϕi⋅∇ ψ+ϕi g ]da=0

∫S
∇ϕi⋅∇ ψda=∫S

ϕi g da

- Now expand the electric potential into a sum of these expansion functions weighted by 
unknown coefficients Aj:

ψ=∑
j

A j ϕ j

- Note that the index j represents the set of functions spanning both x and y dimensions. 
- Apply this to the Poisson equation:

∫S
∇ϕi⋅∇ [∑j

A j ϕ j]da=∫S
ϕi g da

∑
j

A j[∫S ∇ ϕi⋅∇ ϕ j da]=∫S ϕi g da

- At this point, the factor in square brackets depends only on our choice of expansion functions. 
- If we choose a simple set of expansion functions, we can analytically precalculate the factors 
in the bracket and then just treat them as numbers computationally.
- The key to this approach is that we choose expansion functions that are only non-zero in a 
small finite region, so that the surface integral over these functions reduces to an integral over a 
small region. If this region is small enough, the source g is assumed to be constant across this 
region and can come out of the integral:



∑
j

A j[∫S ∇ ϕi⋅∇ ϕ j da]=g i∫S ϕi da

- Here gi is the charge density at the location in space where function ϕi is non-zero.
- The right-hand side is just a set of numbers that can be calculate beforehand so that the 
problem has been reduced to a linear algebra problem where Ak are the unknowns.

∑
j

K ij A j=G i where K ij=∫S
∇ ϕi⋅∇ ϕ j da and Gi=g i∫S

ϕi da

- In matrix notation this becomes:

K A=G

- The solution is:

A=K−1 G

- The core computational task of solving the Poisson equation has been reduced to finding the 
inverse of a matrix, which computers can do very efficiently.
- Note that the potential is known along the boundaries and this must be included as well.
- The Finite Element method is therefore summarized as follows:

1. The human chooses a set of localized expansion functions ϕi

2. The human analytically calculates all K ij=∫S
∇ ϕi⋅∇ ϕ j da and∫S

ϕi da

3. The computer finds the inverse K-1

4. The computer calculates all Gi=g i∫S
ϕi da

5. The computer calculates A=K−1 G

6. The computer calculates the final solution to the electric potential ψ=∑
j

A j ϕ j


