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1. Classical Electromagnetism is a Macroscopic Theory
- Quantum theory is required to accurately describe atomic-scale electromagnetism.
- Classical electromagnetism is therefore a macroscopic theory. Classical magnetism is 
accurate, intuitive, and self-consistent as long as we restrict it to the macroscopic realm.
- There is no valid concept of an electron in classical electromagnetism. The word “electron” is 
hereby banned from this class. Instead we speak of an “electric charge” which is a large 
collection of electrons or other electrically-charged particles.
- For mathematical ease, we define point charges in classical electromagnetism. However, point 
charges do not represent electrons.
- A point charge q represents a macroscopic object that contains millions of electrons or other 
electrically-charged small particles, and yet is small enough compared to the rest of the system 
that the object can be approximated to be condensed to a single point in space.
- The line charge density λ is similarly an idealized mathematical construct consisting of charge 
lying along a wire with zero diameter. The line charge density of classical electromagnetic 
theory physically corresponds to a charged wire with a diameter much larger than an atom but 
much smaller than the rest of the system so that the diameter can be approximated to be zero.
- The surface charge density σ is an idealized mathematical construct consisting of charge lying 
along a two-dimensional surface with zero thickness. The surface charge density of classical 
electromagnetic theory physically corresponds to charged sheet with a thickness much larger 
than an atom but much smaller than the rest of the system so that the thickness can be 
approximated to be zero.
- The volume charge density ρ represents a collection of charge spread out through all three 
dimensions of space.

2. Idealized Zero-Width Objects Are Mathematically Represented Using Dirac Deltas

- Dirac delta definition: δ( x−x0)=0  for x≠x0 and ∫δ(x− x0) f (x )dx= f (x0)

- Multiple dimensions: δ(2)(x )=δ( x−x0)δ ( y− y0) ,  δ(3)(x)=δ(x−x0)δ( y− y0)δ(z−z0)

- The superscript is usually omitted and the number of Dirac deltas involved is inferred from the 
context of the problem.

- Point charge: x=qi
3 x−x i where xi is the position of the charge.

- Line charge: x=x2

- Surface charge: x= x1

- Dirac deltas obey the property: au= 1
∣a∣

 u



- This identity shows us that the units of a Dirac delta are the inverse of the units of its operand. 
We could have guessed this fact by examining its integral definition. It is useful to check an 
equation by making sure the units work out, and the identity above facilitates such a units 
check.
- The general expression for the three-dimensional Dirac delta in any orthogonal coordinate 
system (u, v, w) with incremental length elements (du/U, dv/V, dw/W) is given by:

δ(x−x0)=U δ(u−u0)V δ(v−v0)W δ(w−w0)

- For example, in spherical coordinates, (r ,θ ,ϕ) , the incremental length elements are

(dr , r d θ , r sinθ d ϕ) . This means that U=1 , V =1
r

, and W = 1
r sinθ

, leading to:

δ(x−x0)=δ(r−r0)
δ(θ−θ0)

r
δ(ϕ−ϕ0)

r sinθ

- If we needed only a two dimensional delta in spherical coordinates we would omit the delta 
and length element for the dimension in which the charge distribution is not collapsed. For 
instance, a line charge shaped into a circular ring with radius R centered on the origin and lying 
in the x-y plane would have the equation:

ρ(r ,θ ,ϕ)=λδ(r−R) δ (θ−π/2)
r

- As another example, if charge is spread over a thin spherical shell, we only need one Dirac 
delta:

ρ(r ,θ ,ϕ)=σ δ(r−R)

- Some complications arise if we try to represent charges at the origin or along the z axis. In 
such cases, we can find the right form (1) by ensuring the expression has the right units, and (2) 
by integrating over the charge density and ensuring that the result is the total charge. For 
instance, the correct expression for a point charge at the origin in spherical coordinates is:

ρ(r ,θ ,ϕ)=q δ(r )
4π r 2

- The factors in the denominator may seem like they do not belong there since the entire 
expression only contains a Dirac delta in the r direction and therefore we only need the 
incremental length factor U = 1. However, the factors in the denominator are required in order 
to ensure that the charge density has units of charge per length cubed and to ensure that the 
integral of this entire expression correctly gives the total charge of q. 
- Similarly, the correct expression for a uniform line charge density along the z axis in 
cylindrical coordinates is:

ρc(ρ ,ϕ , z)=λ
δ(ρ)
2πρ   (where ρc is the charge density and ρ is the radial coordinate.)



3. Coulomb's Law
- Coulomb found experimentally that for two electric 
point charges exerting a force on each other:

1. force  charge∝
2. force  1/(distance∝ 2)
3. force is central
4. force is attractive for oppositely charge bodies

- We can assemble each of these observations into an equation:

F ∝q1 q2  F ∝
q1q2

r 2  F∝
q1 q2

r 2 r  F=k
q1q2

r 2 r

- Convert this equation to a fixed coordinate system in order to be mathematically useful:

F=k
q1 q2

∣x1−x2∣
2 r

F=k
q1 q2

∣x1−x2∣
2

x1−x2
∣x1−x2∣

F=k
q1 q2x1−x2

∣x1−x2∣
3

- Be careful to not let the 3 in the exponent of the denominator to deceive you. The force still 
obeys an inverse square law because one of the powers of r in the denominator cancels the 
magnitude r in the numerator.
- The proportionality constant k is dependent on the units used and is found experimentally.

- For SI units, k= 1
40

in vacuum. 

- The final form becomes: 

F= 1
4πϵ0

q1 q2(x1−x2)

∣x1−x2∣
3                        Coulomb's Law, in terms of the force, for two charges

- To be more general, factor out the one charge feeling the force and define the electric field E:

F=q1[ 1
4 0

q2x1−x2

∣x1−x2∣
3 ]  

F=q1E where Ex= 1
40

q x−x1

∣x−x1∣
3     

q1 q2

x 1 x2

r = |x1-x2|



- The electric field is a vector field. It is defined at every point in space and can therefore be 
expressed as a function of spatial coordinates. Every point in space has an electric field vector 
with direction and magnitude. 
- In contrast, the force is not a field of vectors, but is a single vector attached to the object 
feeling the force. We can make this more explicit by rewriting the force equation:

Fon q1
=q1 E(x1) where x1 is the location of charge q1

- What if we want to know the force exerted on an extended charge distribution ρ(x) when 
placed in an electric field E? Then we must sum over all the infinitesimal forces felt by all the 
infinitesimal bits of charge that make up the extended object:

F=∫ d F

F=∫E(x )d q

F=∫ d q
d 3 x

E(x)d 3 x

F=∫ρ(x)E(x)d 3 x

- When using this equation, there is still just one net force vector F that the object ρ(x) 
experiences.
- Now that we know how to handle forces exerted by fields, we can focus only on the electric 
field.
- Experimental observation shows that fields add linearly, therefore the total electric field is the 
vector sum of the field created by each point charge:

E(x)= 1
4π ϵ0

∑
i

qi

(x−xi)

∣x−x i∣
3                  Coulomb's Law, in terms of the field, for many charges

- In the mathematical limit of increasingly smaller charges that are closer together, the sum 
becomes an integral over a continuous charge distribution:

Ex= 1
40

∫ x−x '
∣x−x '∣3

dq

Ex= 1
40

∫ x−x '
∣x−x '∣3

d q
d 3 x '

d 3 x '

E(x)= 1
4π ϵ0

∫ (x−x ')
∣x−x '∣3

ρ(x ')d x '  Coulomb's Law, in terms of the field, for a charge density

- We can use the above equation to find the electric field created by various idealized charge 
distributions:



- For a sheet charge, using x '= x '1 gives Ex= 1
40

∫ x−x '
∣x−x '∣3

 x 'd 2x '

- For a line charge, using x '=x '2 gives Ex= 1
40

∫ x−x '
∣x−x '∣3

 x 'd x '

- For a point charge, using x '=q3x '−x1 returns Ex= 1
40

x−x1

∣x−x1∣
3 q

- Coulomb's Law does not include bounding surfaces. Therefore the integral must be done over 
all charges in the universe, or we must assume that most of the charges in the universe are far 
enough away that their contribution is negligible. Because of this fact, Coulomb's law has 
limited applicability. We can cast it into forms that are more useful.

4. Gauss's Law
- Take a point charge q and fix a simple, closed mathematical surface S around it (called a 
Gaussian surface).
- At some point x on the surface, there is a vector n normal to the surface and an electric field 
vector E arising from the point charge q.

- Take Coulomb's law for a point charge: Ex= 1
40

q
x−x1

∣x−x1∣
3

- Put the charge at the origin: E= 1
40

q
r2 r

- Dot both sides by the normal vector: E⋅n= 1
40

q
r2 cos 

- Integrate both sides over the closed surface: ∮S
E⋅n da=∮S

1
4πϵ0

q
r 2 cosθda

- Expand the surface element using cos da=r2 d  :

∮S
E⋅n da=∮S

1
4πϵ0

q
r2 r 2d Ω

E

n

θ

dΩq



∮S
E⋅n da= 1

4πϵ0
q∮S

dΩ

∮S
E⋅n da= q

ϵ0
where q is the total charge enclosed by the Gaussian surface. 

- Even though we derived the equation above using a point charge, it is valid for any charge 
distribution with total charge q completely enclosed by the Gaussian surface.
- Expand the total enclosed charge in the equation above into an integral over the charge 
distribution filling the volume V enclosed by surface S.

∮S
E⋅n da= 1

ϵ0
∫V

d q

∮S
E⋅n da= 1

ϵ0
∫V

d q
d 3 x

d 3 x

∮S
E⋅n da= 1

ϵ0
∫V

ρ(x)d 3 x                Gauss's Law in integral form for a charge distribution

- The integral form of Gauss's Law allows us to know the total electric field flux through a 
closed surface if we know the enclosed charge. If the electric field is constant across the surface 
and everywhere perpendicular to the surface, E=E0n , the electric field can be brought out of 
the integral and can therefore be determined:

E0∮S
da= 1

ϵ0
∫V

ρ(x)d 3 x

E0=
1

ϵ0 AS
∫V

ρ(x)d 3 x where As is the area of the surface S

- Note that this equation is only useful in very simple cases where a Gaussian surface can be 
drawn for which the electric field is constant and perpendicular to the surface.
- The divergence theorem states that for any vector field A the total flux of A through the closed 
surface S equals the integral over the volume V of the divergence of A, where V is the volume 
bounded by the surface S:

∮S
A⋅n da=∫V

∇⋅A d 3 x

NO DIVERGENCE HIGH DIVERGENCE



- Apply the divergence theorem to the left side of Gauss's law in integral form to find:

∫V
∇⋅E d 3 x= 1

ϵ0
∫V

ρ(x)d 3 x

- Because this must be true for any arbitrary volume over which the integral is done, we can 
shrink the volume down repeatedly to every point in space. Thus the integrands must be equal, 
leading to:

∇⋅E= 1
ϵ0
ρ(x )                   Gauss's Law in differential form

- As opposed to Coulomb's law and Gauss's law in integral form, Gauss's law in differential 
form is a local equation. It connects the charge density at one point and the electric field at the 
same point. For this reason, Gauss's law in differential form is often the most useful in practice.
- According to Gauss's Law, if there is no charge present in a certain region, all the electric field 
lines that enter this region must also exit that region. In other words, Gauss's law tells us that 
positive electric charge creates electric field lines and negative electric charge destroys field 
lines. If there is no charge in a certain region, electric field lines are not created or destroyed in 
that region.

5. The Scalar Potential
- Gauss's law involves the electric field, which is a vector field. Because solving vector 
equations is much more difficult than solving scalar equations, the mathematics can be 
simplified by transforming Gauss's law into a scalar form. 
- Electrostatic fields are experimentally observed to be irrotational (have no curl):

∇×E=0                                                                            Electrostatic fields are irrotational

- Interestingly, mathematics tells us that the gradient of any scalar field also has no curl:

∇×(∇Φ)=0

- Comparing the two equations above, we can define the electric field in terms of some 
electrostatic scalar potential:

E=−∇Φ

- Mathematically, we could have chosen the sign in this definition to be positive or negative. We 
choose negative so that the scalar potential will relate to potential energy in a straight-forward 
way. Mathematically, the gradient operator points uphill in the scalar function landscape and the 
negative gradient operator points downhill. Since balls roll downhill, and electric charges feel a 
force downhill in the potential energy landscape, we choose the negative gradient operator.
- It should be noted that in a strict sense, the scalar potential itself is just a mathematical entity 
which simplifies calculations, and has no formal physical meaning. (The Aharonov–Bohm 
effect seems to dictate that the potentials have physical meaning. But the Aharonov–Bohm 
effect is a quantum effect. In the self-consistent realm of classical electromagnetidm, the 
potentials have no physical meaning.) However, differences of the scalar potential (also known 



as potential differences or voltages) can be related to things with physical meaning.
- The work done in moving a charge from point A to point B in the presence of an electric field 
is just the integrated force times distance:

W=−∫
A

B

F⋅d l

- Substitute into the above equation the force F in terms of the electric field, and the electric 
field in terms of the potential:

W=−∫
A

B

(q1 E)⋅d l → W=q1∫
A

B

∇Φ⋅d l → W=q1[Φ(x B)−Φ(xA)]  or W=q1ΔΦ

- Therefore, the potential difference between two points is the work done W to move a test 
charge q1 between these two points divided by q1: ΔΦ=W /q1 .
- By the work-energy theorem, the potential difference can also be interpreted as the potential 
energy U of a test charge q1 divided by q1:

ΔΦ=U /q1

- As an analogy, electrostatics can be thought of as balls on a hill. Pushing a ball up a hill takes 
work and gives the ball gravitational potential energy. Similarly, pushing a positive point charge 
to points with higher electric scalar potential values (such as towards another positive point 
charge) takes work and gives the charge electrostatic potential energy. A ball on the side of the 
hill feels a net force that is in the direction of steepest descent. Similarly, an electric charge in 
an electric field feels a force that is in the direction that the scalar potential decreases the fastest.
- Next note that the electrostatic scalar potential is always continuous (except across line 
charges and dipole charge layers – but these are unphysical idealizations).
- The continuous nature of the electric potential can be seem from the fact that a discontinuous 
potential would lead to an infinite slope, and therefore an infinite electric field. An infinite force 
would be required to push a test charge past the discontinuity.
- The continuity of the electric potential can be used as a boundary condition on the potential 
but not on the fields.
- The relationship between the scalar potential Φ and the potential energy U is similar to the 
relationship between the electric field E and the force F. The scalar potential is a scalar field 
that exists at every point in space. In contrast, the potential energy is a single number attached 
to a specific object that is experiencing the scalar potential at a certain point in space. We can 
make this more explicit by adding more labels to the equation:

U of q1
=q1[Φ(x1)−Φ(xground )] where x1 is the location of charge q1

or

U of q1
=q1Φ(x1)  if the ground location is chosen such that Φ(xground)=0

- We can now transform the electrostatic equations into forms that are in terms of the scalar 
potential.



- Take Coulomb's Law and use the scalar potential definition:

Ex= 1
40

∫ x−x '
∣x−x '∣3

x 'd x '

−∇Φ= 1
4πϵ0

∫ (x−x ')
∣x−x '∣3

ρ(x ')d x '

- Now use the identity:
x−x '
∣x−x '∣3

=−∇ 1
∣x−x '∣ (Prove this for yourself and save for later.)

−∇Φ= 1
4πϵ0

∫[−∇ 1
∣x−x '∣]ρ(x ')d x '

Φ= 1
4πϵ0

∫ ρ(x ')
∣x−x '∣

d x '+C         Coulomb's law in terms of the scalar potential

- The arbitrary constant is usually made to go away by defining a ground and specifying the 
potential as zero at the ground.
- Take Gauss's law in differential form and use the scalar potential definition:

∇⋅−∇= 1
0
x

∇2Φ=− 1
ϵ0
ρ(x)                               Poisson Equation

- A special case of the Poisson equation results when a region has no charges:

∇2Φ=0            The Laplace Equation

- The potential in the Laplace Equation is defined uniquely by the boundary conditions alone.

6. Capacitance
- A special class of systems in electrostatics involves a collection of separate objects that are 
perfect conductors residing in free space.
- Because such systems have only conductors and free space, the only properties involved are 
the charges, the conductor potentials and geometric properties linking the two.
- The electrostatic potential at any point in space due to a collection of n separate objects is just 
the sum over the potentials due to each object:

Φ= 1
4πϵ0

∑
j=1

n  objects

∫ ρ j(x ')
∣x−x '∣

d x '

- This expression simplifies if we only care about points in space on the surface of one of the 
objects. The surface of each conductor is a constant value (an equipotential) Vi:



V i=
1

4πϵ0
∑
j=1

n  objects

∫ ρ j (x ')
∣xi−x '∣

d x ' where xi is a point on the surface of object i.

- When dealing with conductors, the charge density tends to spread out into the same minimal-
energy pattern every time no matter how much charge is applied. For this reason, the total 
charge Qj on the jth object is an externally applied property, but the normalized charged density 
ρj/Qj is a function of the system's geometry. We factor out Qj explicitly:

V i= ∑
j=1

n  objects [ 1
4π ϵ0

∫ ρ j(x ')/Q j

∣x i−x '∣
d x ']Q j

- At this point, the quantity in brackets is purely a function of system geometry, which does not 
change. We can calculate it once for a certain system by using a dummy set of charges and 
potentials, and then know this number forevermore.

V i= ∑
j=1

n  objects

p ij Q j  where p ij=
1

4πϵ0
∫ ρ j (x ')/Q j

∣x i−x '∣
d x '

- The variable pij is the normalized electric potential felt at the ith conductor due to the jth 

conductor. 
- This tells us that once we know the total charge we applied to each conductor and their 
geometrical coefficients pij, we can find their potentials.
- The opposite case is more useful in practice: we apply certain potentials to each conductor, 
and we want to know the total charges.
- Fortunately, the linear system of n equations can be inverted to yield:

Qi= ∑
j=1

n  objects

C ij V j

- The variable Cii is the capacitance of the ith object, and the variables Cij, i ≠ j are the 
coefficients of inductance.
- Because we are dealing with perfect conductors, the capacitances and coefficients of 
inductance do not depend on material properties. They depend only on the geometry (shape and 
relative location) of the objects.
- For example, suppose we have only two conductors (two parallel plates or two concentric 
cylinders) and we want to calculate the capacitance so that we can stamp it on the side of the 
packaging for future reference. The general equations are:

Q1=C11 V 1+C12V 2

Q2=C 21V 1+C22 V 2

- Let us focus on the first equation. We are always free to add or subtract an overall constant to 
all the potentials without changing the physics. Let us subtract V2 from each potential to get rid 
of the second term.

Q1=C11(V 1−V 2)



- Now solve for the capacitance:

C11=
Q1

(V 1−V 2)

- For this simple system, there is a symmetry so that if both objects have equal and opposite 
charge, they will have the same capacitance, so that we can write:

C= Q
ΔV                                                                       Capacitance of Two-Conductor System

- Because Q is the total charge on one conductor and ΔV is the potential difference between the 
two conductors, we can interpret the capacitance as a geometry-dependent quantity that  
describes the system's ability to hold charge.
- A system with a higher capacitance can hold more charge for a given potential difference.
- If holding as much charge as possible is the aim of a capacitor, its geometry should be altered 
to maximize the capacitance.


