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Chapter 1

The Basics of Light, Color, and Vision

The human visual system uses both monocular
(one-eye) and binocular (two-eye) visual cues in
order to enable depth perception'. Human vision
involves light from the three-dimensional world
being projected onto the two-dimensional retinas.
Because of this, visual cues must be used in order
to infer depth, i.e. in order to enable the visual
perception of the three-dimensional nature of the
external world”.

It is often thought by the general public that
human depth perception arises solely from the
use of two eyes. However, traditional computer
screens, mobile device screens, television screens,
projector screens, paintings, drawings, photo-
graphs, and printed posters all present the same
image to both eyes (except in the rare cases where
lenticular lens, holography, “3D” glasses, or other
stereoscopic systems are used). Therefore, the
perception of depth that is experienced when
viewing images presented through any of these
methods relies solely on one-eye depth percep-
tion cues’. In other words, in almost all situations
where a human is viewing a three-dimensional
object that is not literally present in physical form,
it is only monocular depth cues that are being
used to perceive depth, and not binocular depth
cues. For this reason, monocular depth percep-
tion cues are far more significant and are used far

more frequently than many people realize.

Artists who draw, paint, or print on flat sur-
faces, as well as illustrators, graphic designers, and
computer animators, all rely solely on monocular
depth perception cues in most cases in order to
convey a sense of depth*. As such, becoming an
expert in any of these fields involves learning the
foundational principles of human monocular
depth perception.

Binocular depth perception cues exploit the
use of two eyes that are laterally separated by a
fixed distance’. Humans can only make use of
binocular depth cues when directly viewing the
physical three-dimensional world and when view-
ing images created by stereoscopic systems such
as “3D” movies, holograms, stereoscopes, and
lenticular lens systems. In all other cases—such as
when viewing paintings, drawings, photographs,
magazines, posters, television screens, movie
screens, computer screens, and mobile device
screens—the human visual system must rely
solely on monocular depth cues.

The purpose of this book is to pursue a sys-
tematic investigation of the foundational physics
and geometry of human monocular depth per-
ception. Human monocular depth perception is
broadly significant because it involves the fields
of mathematics, physics, biology, psychology, art,
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and engineering. Specifically, human monocular
depth perception involves mathematics because it
deals with geometric relationships®; it involves
physics because it deals with the physical nature
of light and motion’; it involves biology because
it deals with the human eyes and brain®; it involves
psychology because it deals with human percep-
tion’; it involves art because it is employed by
artists to create a convincing sense of depth'’; and
it involves engineering because it enables engi-
neers to construct and display three-dimensional
models using computers, as well as build machine
vision systems''. Therefore, this book should be
of interest to mathematicians, physicists, biolo-
gists, psychologists, photographers, illustrators,
artists, engineers, graphic designers, video game
developers, and computer animators. In view of
this fact, the language used in this book has been
deliberately designed to be accessible to a broad

audience.

1.1 Fundamentals of Light and Vision
A physical three-dimensional object in the real
world reflects, transmits, or emits light from the
various points on its surface. Regardless of where
the light originally came from (whether from
reflection, transmission, or emission), each point
on the object’s surface acts like a source of light
waves that travel radially outward from that point
in all possible directions'”. These light waves then
travel outward until they encounter the human
eye or some other object. The light coming from
the object contains information about the object’s
shape and its spatial distribution of color, bright-
ness, and polatization’. However, as the light
waves travel away from the various points on the
object’s surface, the light waves overlap with each
other, thereby mixing up the information that is
being carried by the light.

When some of the mixed-up light from the
object propagates through a converging lens, the

refractive effects of the lens cause the light waves
to be redirected and collected. All of the waves of
light that emanated from the same point on the
object’s surface are redirected by the lens so that
they all meet at the same point in space, called the
image point. This process happens for all of the
sets of light waves emanating from all of the
points on the object’s surface, meaning that there
is a corresponding image point in physical three-
dimensional space for each object point. The final
result is that the light is assembled into a three-
dimensional optical image which has the same
shape, spatial distribution of color, spatial distri-
bution of brightness, and spatial distribution of
polarization as the original object. Because there
is a unique one-to-one mapping from each object
point to an associated image point for every point
on the surface of the three-dimensional physical
object, the optical image is necessarily three-
dimensional™.

However, capturing and effectively analyzing a
three-dimensional optical image is difficult. For
this reason, a two-dimensional image capture sut-
face is typically used, whether that be a projector
screen, a camera sensofr, or the eye’s retina. The
two-dimensional image capture surface intercepts
most of the light that was destined to form the
three-dimensional optical image. Because of this,
the three-dimensional optical image is projected
and collapsed down to a two-dimensional image.

Note that the imaging surface captures most
of the light associated with the three-dimensional
optical image, so it would be incorrect to say that
the captured two-dimensional image is a cross-
section of the three-dimensional optical image.
Rather, the entire three-dimensional image is con-
densed down to a two-dimensional image and is
captured”. The ultimate result is that when a two-
dimensional image capture surface is used to
capture the three-dimensional optical image that
was formed by a converging lens, the object’s
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explicit depth information is lost. This is the case
with the images captured by human retinas.

However, because of the physics and geo-
metry that constrain how real three-dimensional
objects can exist and move throughout three-
dimensional space, depth information is still
indirectly retained in the two-dimensional images
that are captured by the retina. The human visual
system must therefore use advanced techniques
that rely on assumptions about how the physics
and geometry works in order to properly extract
the indirect depth information contained in the
two-dimensional images, as well as fill in some of
the depth information that was lost, in order to
create the visual experience in the brain of seeing
three-dimensional objects. These techniques are
called depth perception cues. It’s amazing how
convincingly three-dimensional our visual per-
ception of the outside world feels despite the fact
that our retinas are actually only capturing two-
dimensional images.

When the light rays coming from an external
object encounter the human eye, they first travel
through the transparent cornea at the front, then
they travel through the aqueous humor behind
the cornea, and then they travel through the main
lens, as shown in Fig. 1. In doing so, the rays of
light are redirected and form an image on the

Sclera .
Vitreous

humor

Choroid

Retina

Optic Nerve

Figure 1. Anatomy of the human eye.

retina that is on the back inner surface of the eye.
The cornea, aqueous humor, and the main lens
collectively act like a single, effective lens. This
effective lens is a converging, adaptive, gradient-
index lens'’.

After exiting the lens, these rays of light then
travel through the transparent, gel-like vitreous
humor and then strike the retina, forming a two-
dimensional image that is captured. In this way,
the three-dimensional optical image that would
be formed by the effective lens of the eye if
nothing was in the way is collapsed into a two-
dimensional image on the retina.

The retina contains a dense spatial array of
photoreceptor cells that are able to capture and
convert bits of light to electrical signals'’. After
collection and pre-processing of the electrical
signals in the eye, these signals are sent along the
optic nerves to the brain where they are then
assembled and visually experienced as a three-
dimensional object.

1.2 Detecting the Properties of Light

Human vision is able to detect and capture four
basic properties of light: color, brightness, spatial
distribution, and temporal variation.

Brightness is detected by the retina’s ability to
measure the varying amounts of optical energy
density striking a group of photoreceptor cells
each fraction of a second and produce electric
signals that encode this information'.

The spatial distribution of the light is captured
by employing a spatial array of sensitive photo-
receptor cells distributed across the retina.

The temporal variation of the light is captured
by continuously reacquiring and stacking images
at a high frequency; about 20 to 60 images per
second, depending on the illumination levels and
other factors'. The image acquisition frequency
of the human visual system depends strongly on
the overall brightness of the scene that is being
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observed. In low-lighting conditions, the human
brain sets the image acquisition frequency to a
lower value because this allows the retinas more
time to collect more light for each image, thereby
boosting sensitivity™. In this way, a high temporal
resolution is sacrificed to enable detection of
objects in low-lighting conditions.

The ability of human vision to detect the tem-
poral variation information that is carried by a
stream of light is crucial to detecting the motion
of physical objects. The true motion of an object
through three-dimensional space is governed by
the laws of physics. Because of this, depth infor-
mation can be extracted from the observed
motion of the object. In this way, the human
visual system’s ability to detect the temporal
variation of the light entering the eye helps enable
depth perception. Depth cues that use motion
include motion parallax, the kinetic depth effect,
and optical expansion.

The high frequency of image acquisition in
human vision enables motion perception at a high
temporal resolution, which causes depth cues that
use motion to be highly effective. For this reason,
motion parallax, the kinetic depth effect, and
optical expansion tend to be the most accurate
and the most frequently used monocular depth
perception cues.

Interestingly, because a low lighting condition
leads the human visual system to use a low image
acquisition frequency, a low lighting condition
impairs the use of motion-related depth cues and
thereby ultimately causes a decreased ability to
propetly perceive depth®.

1.3 Detecting Color

The color information carried by the light that
enters the eye is detected through the utilization
of three different types of cone-shaped photo-
receptor cells that are sensitive to three different
wavelength ranges: long-wavelength colors (L),

mid-wavelength colors (M) and short-wavelength
colors (S). The L, M, and S cone cells are often
also referred to as red-sensitive, green-sensitive,
and blue-sensitive cone cells, respectively. The
red-sensitive cone cells can detect red colors
more sensitively than the other two cone types.
The green-sensitive cone cells can detect green
colors more sensitively than the other two types.
And the blue-sensitive cone cells can detect blue
colors more sensitively than the other two types.

With that said, referring to the cone cells types
as red, green, and blue can be misleading because
each type detects a wide range of colors rather
than just a single color. The red-sensitive cone
cells detect red, orange, yellow, and green colors.
The green-sensitive cone cells detect red, orange,
yellow, green, and blue colors. Lastly, the blue-
sensitive cone cells detect green, blue, and violet
colors. By comparing the relative strength of the
electrical signals coming from a spatial group of
I, M, and S cone cells, the human brain is able to
reconstruct the original color™.

The central part of the retina called the macula
has a far higher density of cone cells than any-
where else in the retina. As a result, the part of the
optical image that lands on the macula can be
experienced at a far higher resolution than other
parts of the image. The central part of the macula,
called the fovea, is the part of the macula with the
highest cone cell density, reaching a peak density
of nearly 200,000 cone cells per square milli-
meter”.

The fovea is almost exactly lined up with the
eye’s optical axis, which is the line that is perpen-
dicular to the plane of the lens and runs through
the center of the lens. This arrangement has the
benefit of the fovea (which sees with the highest
resolution) being placed almost exactly at the
location where lies the part of the image that has
the highest intensity and the lowest amount of
chromatic aberration, because it is lined up with
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the center of the lens.

This arrangement also has the benefit of being
aligned with the gaze direction, meaning that if a
person wants a certain part of a distant object to
have its image fall on the fovea, thus enabling the
person to see that part of the distant object in the
greatest detail, the person must simply gaze
directly at that part of the distant object. In other
words, in order for a person to see as much detail
as possible for a particular part of a distant object,
he must simply point the lens of each eye directly
at that part of the distant object. No matter where
a person looks, the fovea stays aligned with the
gaze direction and therefore stays aligned with the
highest-resolution part of the received image.

High-resolution color central vision in good
lighting is handled by the macula, which is the
larger area that contains the fovea. Central vision
therefore spans the polar angles from 6 = 0° to
9° relative to the optical axis. About 90% of the
visual information sent to the brain from the
retina originates from the macula. Therefore, the
parts of the image of the observed external world
that lies at polar angles less than 9° are the most
important and seen in the greatest detail. This is
not as limiting as it may sound because a person
can always redirect his or her gaze to directly look
at whatever is interesting and thereby bring the
visual perception of it into high resolution.

The visual field that exists outside of central
vision, which corresponds to polar angles greater
than 9°, is called peripheral vision. The outermost
portion of peripheral vision is called far peri-
pheral vision, which corresponds to the polar
angles greater than 60°. The highest-resolution
vision happens only in the fovea, which spans
polar angles from 0° to 1°. Thus, visual activities
that require the highest-resolution vision, such as
reading and drawing, must happen mostly in the
fovea. Because foveal vision only happens for
polar angles of less than one degree, a person

must continuously shift his gaze as he reads or
draws in order to process the whole page.

Note that the visual field that is experienced
by a single human eye does not extend uniformly
to the hemisphere’s edge at @ = 90°. Rather, the
portion of the visual field by the nose has its limit
typically below 90° (depending on both the gaze
direction and the size of the nose), while the
portion of the visual field on the side opposite of
the nose typically extends beyond 90°. However,
for the sake of simplicity, we will assume in this
book that the limit of the human monocular
visual field is the circle at 90°. Considering that
almost all of human vision occurs in the central
region and in the near peripheral region, this
simplification is not as drastic as it sounds.

In addition to the color-sensitive cone-shaped
photoreceptor cells, the retina also contains an
array of rod-shaped photoreceptor cells. Under
normal lighting conditions, the contributions to
vision from the rod cells are negligible. In con-
trast, under low-lighting conditions, the rod cells
are the dominant photoreceptor cells enabling
vision. This is because each rod cell is about a
hundred to a thousand times more sensitive than
a single cone cell, once fully adapted. This is also
because there are about twenty times more rod
cells in the retina than cones cells, because several
rod cells couple to the same single output signal
(via the same interneuron), and because rod cells
collect light over longer periods of time for each
captured image than cone cells.

The price of extremely heightened sensitivity,
which is ultimately what enables vision in low-
light situations, is that rod-mediated vision has a
much lower spatial resolution, a much lower tem-
poral resolution, and zero color differentiation. In
everyday terms, this means that when there is very
little light present in the environment, humans
cannot see details well, cannot see rapid changes
well, and cannot see color. However, this is still
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better than seeing nothing at all when in low-light
situations!

In summary, under normal lighting conditions,
humans can effectively see and distinguish colors,
brightness levels, the spatial distribution of the
light, and the temporal variation of the light. In

contrast, properties of light which humans cannot
see include wave polarization, wave phase, and
momentum. However, using appropriately built
cameras, humans can indirectly see these other
properties of light.



Chapter 2

The Coordinate Systems of

Human Monocular Vision

The casting of an image of the three-dimensional
world onto the concave spherical retina inside the
eye is equivalent to the direct projection of the
three-dimensional world onto a convex spherical
front surface that is concentric with the eye. The
casting of the image that was formed by the eye’s
effective lens onto the concave retina generates
an image that is inverted top-to-bottom and also
inverted left-to-right, relative to the true physical
reality.

However, when processing the captured opti-
cal image, the brain corrects for this inversion by
reversing the image bottom-to-top and right-to-
left. Thus, the final image that is experienced by
the brain is equivalent to the projection of the
external world onto a convex spherical mathema-
tical surface that surrounds and is concentric with
the eye. For the sake of simplicity, this book will
assume that vision consists of the external world
being projected directly onto a convex spherical
front surface.

Also, for simplicity, let us assume that the eye
is always located at the origin of our coordinate
system and the eye is always looking in the same
direction, which we will call the z direction. In this
approach, which is often used in computer-aided
design and animation, the real-world process of

the eye shifting its gaze in different directions is
mathematically implemented by leaving the eye
gazing in the z direction and rotating the entire
world in corresponding ways. Similatly, the eye
physically moving its location (such as when a
person walks along a sidewalk) is implemented
mathematically by leaving the eye at the origin
and shifting the entire world appropriately.

In order to mathematically analyze human
monocular depth perception, let us carefully
define the most common coordinate systems.

Because the three-dimensional physical world
is directly projected onto a two-dimensional con-
vex spherical image capture surface, the location
of an object in the captured image, which is what
the person sees, is specified using the angular
spherical coordinates. As the result of the human
retina being spherical, using any other image
capture surface will introduce distortions com-
pared to what the eye actually sees. For instance,
capturing an image of the real world on a flat
camera sensor, which is typically what cameras
use, will necessarily introduce distortion. Because
such complications do not arise if a real retina is
observing the real world, these complications will
be avoided until the end of this book.

Let us define the “viewing axis” as the gaze
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direction, i.e. the direction that extends from the
center of the fovea through the center of the lens
to the outside world. I will sometimes also call the
viewing axis the “central axis.” Because we are
only dealing with monocular vision, let us define
the observer as a single human eye.

2.1 Defining the Image Coordinates
The angular spherical image coordinates are de-
picted in Fig. 2. They are defined as follows.

The image point’s polar angle 6 is the angle
between the viewing axis and the line that con-
nects the image point and the observer. The angle
0 1s zero on the viewing axis and increases in value
as it extends away from the viewing axis. This
angle ends at the edge of the viewing field, which

Figure 2. The image coordinate system.

is assumed to be at = 90°. Sometimes the word
“latitude” is used to refer to this type of angle.
However, latitude starts at a value of 90° on the
viewing axis and decreases until it is zero on the
edge of the field of view. In other words, the
value for the latitude equals (90° - 6). To avoid
unnecessary confusion, latitude will not be used
in this book.

The image point’s azimuthal angle ¢ is the
angle between the +x axis (which points right-
wards along the image capture surface) and the
line that connects the image point and the
viewing axis. The angle ¢ is zero when the object
is situated directly to the right of the viewing axis
and increases in value as the object sweeps

counterclockwise.

2.2 Defining the Object Coordinates:
Rectangular Coordinates and Cylindrical
Coordinates About the z Axis

The true location of a physical object in three-
dimensional space can be specified using various
coordinate systems. One of the most commonly
used object coordinate systems is the rectangular
coordinate system. The rectangular coordinate
system is especially appropriate when the physical
objects are rectangular solids, as is often the case
with human-made objects.

In the process of determining the manner in
which the object point in rectangular coordinates
physically maps to the corresponding image point
in spherical coordinates, we end up establishing
another coordinate system, which is cylindrical
coordinates about the z axis. Thus, rectangular
coordinates and cylindrical coordinates about the
z axis must be handled at the same time. Note that
we are using a left-handed rectangular coordinate
system in this book because that is the most
natural system to use from the viewpoint of the
human eye.

The rectangular object coordinates and the
cylindrical object coordinates about the z axis are
shown in Fig. 3. They are defined as follows.

The x coordinate is the horizontal distance of
the object from the viewing axis along the object
plane. The object plane is the flat plane that
contains the location of the object and is perpen-
dicular to the viewing axis. The x coordinate starts
at zero on the vertical axis of the object plane and
increases in value as it extends rightward away
from the vertical axis.

The y coordinate is the vertical distance of the
object from the viewing axis along the object
plane. The y coordinate starts at zero on the
horizontal axis of the object plane and increases
in value as it extends upward away from the
horizontal axis.

The z coordinate is the distance between the
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Figure 3. The object coordinate system for rectangular

coordinates and cylindrical coordinates about the z axis.

object plane and the plane that contains the
observer that is parallel to the object plane. The z
coordinate starts at zero on the plane containing
the observer and increases in value as it extends
forward, away from the observer in a direction
that is parallel to the viewing axis.

The cylindrical radial coordinate p is the dis-
tance between the object’s location and the point
where the viewing axis intersects the object plane.
The p coordinate starts at zero on the viewing axis
and increases in value as it extends within the
object plane away from the viewing axis.

The azimuthal angle ¢ is the angle between the
+x axis and the line within the object plane that
connects the object’s location and the viewing
axis. The angle ¢ is zero when the object is sitting
directly to the right of the viewing axis (i.e. on the
+x axis) and increases in value as the object
sweeps counterclockwise around the viewing axis
while staying within the object plane.

The azimuthal angle of cylindrical coordinates
about the z axis is the same as the azimuthal angle
of spherical coordinates. This means that the
azimuthal angle of the object’s physical location
has the same value as the azimuthal angle of the
observed location on the image capture surface.

The radial distance r is the distance between
the observer and the object. The radial distance is

not actually part of the rectangular coordinate
system or the cylindrical coordinate system about
the z axis, but is defined here because it will be
needed in the derivations. The r coordinate starts
at zero at the observer’s location and increases in
value as the object moves radially away from the
observer.

In summary, when specifying the location of
the physical object in rectangular coordinates, we
use the coordinates (x, y, z). When specifying the
location of the physical object in cylindrical coor-
dinates about the z axis, we use the coordinates
(p, 9, z). At the same time, the observed location
of the object on the convex spherical image cap-
ture surface is specified by the angular spherical
coordinates (6, ). We can derive the relationships
between these various coordinate systems.

Applying the laws of trigonometry to the right
triangle formed by the x, y, and p axes, we find:

p?=x*+y? (M
i =Y
sing = . 2)
X
cos@ = > 3
tang = % “)

Applying the laws of trigonometry to the right
triangle formed by the z, p, and r axes, we find:
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r? =z%+ p? (5)
sinf =2 )
cosf = ; 7
tan6 =2 ®)

Solving for the spherical image coordinates in
terms of the rectangular object coordinates by
combining Egs. 1 and 8, and by rearranging Eq.
4, we find:

6 =tan! (@) )
¢ =tan"! (%) (10)

Solving for the spherical imaging coordinates in
terms of the cylindrical object coordinates about
the z axis by rearranging Eq. 8, we find:

0 =tan?! (g)

p=9

The geometry involved when projecting image

(11)
(12)

locations onto a convex spherical image capture
surface leads to the spherical coordinates having
circular symmetry about the viewing axis. This
means that an object that is held at a fixed axial
distance p and a fixed distance z while being swept

through various azimuthal angles ¢ will retain a
constant polar angle 6. This can be seen in Eq. 11
by the fact that the polar angle of the observed
location on the image capture sphere does not
depend on the azimuthal angle of the object’s
physical location.

2.3 Defining the Object Coordinates:
Spherical Coordinates

Alternately, we can specify the physical location
of the object in three-dimensional space using
spherical coordinates. When using a spherical
object coordinate system and a spherical image
coordinate system, there is symmetry such that
the polar angles for both coordinate systems are
the same and also the azimuthal angles for both
coordinate systems are the same. The spherical
object coordinates are shown in Fig. 4. They are
defined as follows.

The radial distance r is the distance between
the observer and the object, which was defined
previously.

The polar angle 6 is the angle of the object’s
physical location relative to the viewing axis.

The azimuthal angle ¢ is the angle between the
x axis and the line connecting the object location
and the viewing axis.

y

Figure 4. The object coordinate system for spherical coordinates.

10
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For completeness, we write down in Egs. 13
and 14 the trivial relations between the angular
spherical object coordinates and the correspond-
ing angular spherical image coordinates.

Note that the angles 6 and ¢ must be measured
in radians because they will be needed in the arc
length equations. Also note that the human visual
system is such that it cannot directly see the radial
distance. As such, two objects that have the same
polar angle and the same azimuthal angle but are
at different radial distances from the observer will
have the same location on the image capture sur-
face and will therefore appear at the same location
in the observed image. This can be seen by the
fact that Eqs. 13 and 14 do not depend on r.

0=0 (13)

p=¢ (14)
2.4 Defining the Object Coordinates:
Cylindrical Coordinates About the y Axis
The last commonly used object coordinate sys-
tem is cylindrical coordinates about the y axis.
This coordinate system can be pictured as being
defined by the cylindrical surface containing the
object’s location, that is centered on the observer,
and that has its axis running parallel to the y axis.
These object location coordinates are shown in
Fig. 5. They are defined as follows.

The angle a is the horizontal angle between the
viewing axis and the / line. The / line is the line
connecting the observer and the point on the
cylindrical surface containing the object’s location
that has the same x coordinate as the object’s
location but is parallel to the x-z plane.

11

The vertical y coordinate is the same thing as
the y coordinate of the rectangular coordinate
system, which was defined previously.

The coordinate / is the direct distance between
the observer and the cylindrical coordinate object
surface. In other words, / is the distance between
the observer and the point (x, 0, z) if the object is
located at (x, y, z). Or, equivalently, it is the dis-
tance between (0, y, 0) and the object’s location at
x,, 2).

Applying the laws of trigonometry to the right
triangle formed by the x, /, and z axes we find:

12 = x? + z* (15)
sina =§ (16)
cosa =% (17
tana = > (18)

Also, applying the Pythagorean theorem to the
right triangle formed by the y, /, and 7 axes, we
find:

r2=1%+y? (19)
To solve for the spherical image coordinates in
terms of the cylindrical object coordinates about
the y axis, we insert Eqs. 17 and 19 into Eq. 7, as

well as insert Eq. 16 into Eq. 10, to find:

_ —1( lcosa

8 = cos (W) (20)
— -1 Yy

¢ = tan (lsin a) (21)

Note that Fig. 5 makes clear that the angle a
equals the angle 6 on the x axis (when y = 0), as
can be verified by inserting y = 0 into Eq. 20.
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Figure 5. The object coordinate system for cylindrical

coordinates about the y axis.
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Chapter 3

Plotting the Observed Location as a

Function of the Object’s Physical Location

To get an intuitive sense for the meaning of the
equations shown in Chapter 2, which relate the
object coordinates to the image coordinates using
the various image coordinate systems, and also to
help us understand how depth information can
be extracted from simple two-dimensional retina-
captured images, let us plot these equations. To
focus on the basic aspects at work, let us plot the
values of the image coordinates as the object is
moved solely along one of the object coordinate
directions. Note that in all of the plots below and
throughout this book, all distances and lengths
are presented in meters.

In addition to determining the observed loca-
tion of the physical object, as observed in the

Figure 6. Plotting 6 as p increases.
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captured image, Eqs. 9-10, 11-12, 13- 14, and 20-
21 also determine the observed distance between
two physical objects and the observed speed of
objects, because these both depend trivially on
positions. By analyzing these parameters, we can
show how depth perception information arises
from the relations between the observed position,
speed, and distances and the true position, speed,
and distances.

3.1 Plotting for Rectangular Coordinates and
Cylindrical Coordinates About the z Axis

Fig. 6 shows what it means to be plotting the
observed polar angle 6 as the object moves so that
it’s p coordinate increases steadily, with every-
thing else held constant. This is equivalent to an
object moving directly away from the viewing
axis. Fig. 7 shows the resulting plot, showing 6 as
a function of p for various fixed z values, which is
the plot of Eq. 11. As expected, the farther away
the object gets from the viewing axis, the larger
the polar angle at which it appears. However, the
correspondence is clearly non-linear. Because of
the non-linear relationship, an object at a fixed z
that moves with increasing p will eventually be
visually located in the far peripheral vision and
will appear to be moving very slowly.
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Figure 7. Obsetved polar angle 6 as a function of the object's cootdinate p.
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Figure 8. Obsetved polar angle 6 as a function of p for objects in central vision.
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This effect depends on z. For objects at very
large z values, the object has to move a very large
distance p away from the viewing axis in order to
end up in the observed state of nearly motionless
in the far peripheral vision. In contrast, objects
with increasing distance p that are at extremely
small z values (i.e. very close to the observer when
at p = 0) will almost always be in the observed
state of nearly motionless in far peripheral vision.
In the limit that a moving object is infinitely far
away from the viewing axis (p — o) at a fixed z,
the object will appear to be perfectly motionless
at the polar angle of # = 90°. This means that a

10
p (m)
truck that travels at a constant velocity directly

14

12 14 16 18 20

eastward across your field of view as you stare
continuously northward, and that barely misses
you as it passes (so that it's z value is very small),
will appear to be moving slowly for a long time,
will then suddenly appear to be moving very
quickly as it zooms past you, and then will appear
to be moving slowly again for a long time.

The dependence on z shown in Fig. 7 means
that for a collection of objects that are dispersed
uniformly over an x-y object plane that has low z
value, most of the objects will appear at large
polar angles, i.e. in the peripheral vision.
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For instance, for z = 1.0 m, which is about the
distance between a desktop computer screen and
the eye of a person who is sitting at the desk while
looking at the screen, all objects on the screen
that are more than p = 1.7 cm away from the
viewing axis will be outside of foveal vision and
all objects that are more than p = 16 cm away
from the viewing axis will be outside of central
vision. For this reason, a person must constantly
shift his gaze to clearly see small objects or words
spread out all over the computer screen.

As another example, if you are staring directly
at a large fence and you are only a few meters
away from the fence, then most of the fence will
be in your far peripheral vision.

For object planes very far away from the
observer, a wide expanse of objects in that plane
will be in central vision. Using the limit for central
vision as 6 = 9.0°, and inverting Eq. 11 in order
to apply it to this angle, we find that p = 0.16z.
This means that for each additional 10 meters that
the object plane becomes farther away from the
observer, an additional 1.6 meters of axial dis-
tance enters central vision.

Fig. 8 shows the same information as in Fig. 7,
but zoomed in so that now only the angles that
correspond to central vision are presented. As
this figure shows, the parts of the curves that lie
within central vision are always extremely close to
being linear. This means that moving objects that
stay within central vision while moving in the p
direction at a true speed that is constant will
visually appear to be moving at a constant speed
(assuming that the eye’s gaze remains fixed). In
other words, the observed speed will behave like
the object’s true speed.

Because humans devote so much of their
attention to the central region of vision, the case
of the observed motion matching the true motion
could be thought of as the normal state of affairs,
while the non-linearities that are observed in the

15
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Figure 9. Plotting 0 as z increases.

peripheral vision may be thought of as distortions
which the brain can ignore or correct for.

Fig. 9 shows what it means to be plotting the
observed polar angle 6 as the object’s z coordinate
is increased, but everything else is held constant.
This is equivalent to an object that is offset from
the viewing axis moving in the z direction. Fig. 10
shows the resulting plot, showing € as a function
of z for various fixed p values. This figure is still
plotting Eq. 11, but is varying z instead of p. This
figure shows that the farther away that an object
gets in the z direction from the observer, the
closer that the object will appear to the 8 = 0°
point, which we will call the central horizon point.
To be clear, the central horizon point is the point
where the viewing axis intercepts the spherical
image capture surface and is the point where
human vision sees with the highest resolution
(under normal lighting conditions). In art, this
point is often called the central vanishing point.

In the limit that the object is infinitely far away
in the z direction, it is observed to be exactly at
the central horizon point (i.e. at @ = 0°) for any
finite p value. This is called the horizon perspec-
tive effect. In everyday language, we say that as an
object moves farther away from you (in the z
direction), the closer that it visually appears to
move toward the central horizon point. Note that
in everyday life, the word horizon is usually meant
to refer to the horizontal line formed where the
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Figure 10. Observed polar angle 6 as a function of the object's coordinate z.
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distant sky meets the distant ground. However,
this is an artifact of earthlings living on an approx-
imately flat, infinite ground plane. In reality, the
perspective horizon is the single central point at
6 = 0°. This effect also leads to the fact that all
parallel, straight lines that directly extend away
from the observer in the z direction appear to
converge at the central horizon point. That’s why
this point is called the central vanishing point in
art and design.

Fig. 10 shows that an object at a fixed p value
that is traveling away from the observer in the z
direction at a constant true speed will appear to
initially be moving quickly toward the central
horizon point and then later appear to be moving
more slowly toward the central horizon point.

Furthermore, Fig. 10 shows that the larger the
value of p, the more gradual is this transition from
moving quickly toward the central hotizon point
to then moving slowly toward the central horizon
point.

Note that a plot of the polar angle 6 of the
observed location on the image capture sphere as
a function of the azimuthal angle ¢ of the object’s
physical location is not shown because 6 is con-
stant as ¢ is varied. This can be seen from the fact
that Eq. 11 does not depend on ¢.

50
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z (m)
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Also note that plots of the observed azimuthal
angle ¢ as a function of the object’s z and p coor-
dinates are not shown because ¢ is constant as the
object’s z and p coordinates are varied. This can
be seen from the fact that Eq. 12 does not depend
on z or p. Lastly, a plot of the observed azimuthal
angle ¢ as a function of the object location’s true
azimuthal angle ¢ is not shown because they are
the same thing, as shown in Eq. 12.

Fig. 11 shows what it means to be plotting the
observed polar angle 0 as the object’s x coordinate
increases, but everything else is held constant.
Fig. 12 shows what it means to be plotting the
observed polar angle 6 as the object’s y coordinate
increases, but everything else is held constant.
The situation shown in Fig. 11 is equivalent to an
object moving horizontally in a straight line
across the observer’s field of view, but typically
not at the horizon level. This would be like a low-
flying airplane traveling continuously eastward
across your field of view while you look contin-
uously north at the horizon.

Fig. 13 shows the resulting plot, showing 6 as
a function of x for various fixed y values when the
object is at z = 4 m, which is plotting Eq. 9. There
is symmetry such that the curve for the y = 2 m
situation is the exactly the same as the curve for
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Figure 11. Plotting € as x increases.

[\

Figure 12. Plotting 6 as y increases.

Figure 13. Obsetved polar angle 6 as a function of x, atz = 4 m.
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the y = -2 m situation. The same is true of all
other values of y.

Fig. 13 shows that an object traveling in the x
direction with non-zero y will appear to momen-
tarily move close to the central horizon point as
it passes, but never reaches the central horizon
point. The higher the value of the object’s y coor-
dinate, the less it approaches the central horizon
point as it passes by.

Figs. 14 and 15 show the same type of plot as
Fig. 13, but now with z = 16 m and z = 64 m,
respectively. As these figures show, increasing z
causes an object traveling in the x direction at a
non-zero y to spend longer at smaller polar angles
and to approach closer to the central horizon
point when passing.

Fig. 16 shows the exact same information as is

——y=0m
y=#lm
——y=+2m
—y=44m
——y=+8m
——y=%16m
0 10 20 30 40 50
x (m)
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shown in Fig. 15, but zoomed into the region of
central vision. This figure shows that for relatively
large z values and very small y values, the depen-
dence of polar angle 6 on the object’s physical x
coordinate is approximately linear.

Instead of plotting the observed polar angle 8
as a function of the object coordinate x, we can
plot it as a function of the object coordinate y.
However, because of the symmetry of the
viewing geometry, such plots would look exactly
the same as the plots in Figs. 13 to 16.

In other words, the situations shown in Figs.
11 and 12 both give rise to the exact same plots
(after appropriately relabeling the axes). This is
evident from the symmetry of Eq. 9. This makes
sense in view of the fact that what we decide to
call the x axis vs the y axis is physically arbitrary.
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Figure 14. Obsetrved polar angle 6 as a function of x, atz = 16 m.
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Figure 15. Observed polar angle 6 as a function of x, at z = 64 m.
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Figure 16. Observed polar angle 6 vs x, at z = 64 m, for central vision.
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Figure 17. Plotting ¢ as x increases.

In fact, an object traveling along any straight
line in an x-y object plane will give rise to the same
types of curves as in Figs. 13 to 16 (as long as we
interpret the direction that the object is traveling
as the x direction and the direction that is perpen-
dicular to the x direction and is in the object plane
as the y direction).

So far we have only investigated the observed
polar angle as a function of rectangular coordi-
nates. Let us now investigate the observed azimu-
thal angle.

Fig. 17 shows what it means to be plotting the
observed azimuthal angle ¢ as the object’s x coor-
dinate increases, but while everything else is held
constant. Fig. 18 shows what it means to be plot-
ting the observed azimuthal angle ¢ as the object’s

/

T
P

/

Figure 18. Plotting ¢ as y increases.

¥ coordinate increases, but while everything else
is held constant. Fig. 19 shows the resulting plot
of the situation in Fig. 17, which is the result of
plotting Eq. 10.

Fig. 19 shows that an object traveling in the x
direction with non-zero y will start at ¢ = 180°
when it is infinitely far away in the -x direction,
meaning that it is exactly to the left of the central
horizon point. It will then sweep through the
azimuthal angles from 180° to 0° as it passes the
observer, and then will end up at 0° when it is
infinitely far away in the +x direction, meaning
that it is exactly to the right of the central horizon
point. Fig. 19 also shows that the greater the value
of the object coordinate y, the more gradually the
object sweeps through all of these angles.

Figure 19. Observed azimuthal angle ¢ as a function of x.
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Note that due to symmetry, an object traveling
in the y direction at a fixed x value will have the
exact same plots as an object traveling in the x
direction at a fixed y value (aside from an overall
angle offset and vertical axis flip because of where
¢ = 0 is defined). In other words, the situations
shown in Figs. 17 and 18 ultimately both have the
same types of curves.

Fig. 19 only shows curves for positive y values.
Due to symmetry, the curves for negative y values
would have the same trends as in Fig. 19 but
would be inverted vertically in the plot because
each curve would sweep from -180° to -90° to 0°
instead of sweeping from +180° to +90° to 0°.

A plot of the observed azimuthal angle ¢ as a
function of the object coordinate z is not shown
because ¢ is constant as the object’s z coordinate
changes. This is shown by the fact that Eq. 10 is
independent of z. We already encountered this
fact when discussing the coordinate system of
cylindrical coordinates about the z axis because
rectangular coordinates and cylindrical coordi-
nates about the z axis both include the same z
coordinate.

3.2 Plotting for Spherical Coordinates
The observed polar angle 6 does not change as
the object location’s spherical coordinates » and ¢
are changed. Also, the observed azimuthal angle
¢ does not change as the object location’s spheri-
cal coordinates 7 and 6 are changed. These facts
can be seen in Egs. 13 and 14. For these reasons,
none of these situations have meaningful plots
and therefore none of these situations are plotted.
Furthermore, the observed polar angle 6 of the
object’s location on the image capture sphere and
the polar angle 6 of the object’s true location are
exactly the same, as shown in Eq. 13. Similarly,
the observed azimuthal angle ¢ and the object’s
true azimuthal angle ¢ are exactly the same, as
shown in Eq. 14. Therefore, these two situations

have trivial plots and are therefore not plotted.
These results arise from the fact that the object’s
true location coordinate system is spherical and
the object’s observed location coordinate system
is spherical, and both systems are centered on the
observer and aligned with each other.

This means that any time an object moves at a
true constant speed along a curved path that is
part of a sphere centered on the observer, the
object will also visually appear to travel at a con-
stant speed across the observer’s field of view.

Additionally, this means that if an object is
moving in the radial direction (i.e. directly toward
or away from the observer in any r direction), its
observed location will remain constant so that its
location will visually appear to be motionless. (Its
observed size, however, will change.)

3.3 Plotting for Cylindrical Coordinates
About the y Axis

Fig. 20 shows what it means to be plotting the
observed polar angle 6 as the object’s a coor-
dinate inctreases, for various y values, while / is
held fixed. This is equivalent to an object moving
to the right while staying on a cylindrical surface
that has its axis vertical and running through the
observer’s location.

Figutre 20. Plotting 0 as a increases.

Fig. 21 shows the resulting plot, plotting 6 as
a function of a, for various y values when [ is held
fixed at / = 4 m, which is the plot of Eq. 20. The
larger the a angle is, the more that the object ends
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Figure 21. Obetved polar angle 0 as a function of a when / = 4 m.
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Figure 22. Observed polar angle 6 as a function of o when / = 16 m.
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up in the far peripheral vision. Furthermore, an
object with a large y value that is traveling to the
right along the cylindrical surface is farther from
the central horizon point as it passes. An object
moving in the a direction, starting at a = -90°,
starts in far peripheral vision to the left of the
central horizon point, moves close to the central
horizon point as it zooms by, and then ends up in
far peripheral vision to the right of the central
horizon point. For an object location with a y
value that is larger than about a quarter of its /
value, it remains in far peripheral vision the entire
time as it moves in the a direction.

Figs. 22 and 23 show the same type of plot as
Fig. 21, but now with / = 16 m and / = 64 m,
respectively. As these figures show, increasing /
causes an object that is traveling rightwards along
a cylindrical surface about the y axis to approach
closer to the central horizon point. For an object
with an / coordinate value that is much larger than
its y value, and it moves rightwards across the
cylinder, the curve would be approximately linear,
as shown in Fig. 23. This means that such an
object would visually appear to be moving at a
constant speed.

Fig. 24 shows what it means to be plotting the
observed polar angle 8 as the object’s y coordinate

Figure 24. Plotting 6 as y increases.

increases in cylindrical coordinates about the y
axis, but while everything else is held constant.
This is equivalent to an object that is laterally off-
set moving in the y direction, for various lateral
offsets.

Fig. 25 shows the resulting plot, where 0 is a
function of y for various a values when / = 4 m,
which is plotting Eq. 20. The result is similar to
the result in Fig. 13, because the geometries are
similar.

Figs. 26 and 27 show the same situation as in
Fig. 25 but with / = 16 m and / = 64 m, respect-
tively. As is evident in these figures, increasing /
causes the curves to flatten so that the changes in
polar angle are more gradual and are overall
lower, meaning that the object spends less time in
far peripheral vision.

Figure 25. Observed polar angle 6 as a function of y when / = 4 m.
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Figure 26. Observed polar angle § as a function of y when / = 16 m.
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Figutre 27. Observed polar angle 6 as a function of y when / = 64 m.
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Fig. 28 shows what it means to be plotting the
polar angle 0 as the object’s / coordinate increases,
while everything else is held constant. This is
equivalent to an object moving horizontally away
from the observer so that [ increases, but such
that a and y are constant.

Fig. 30 shows the resulting plot, showing 0 as
a function of / for various fixed a values while y
is fixed at y = 4 m, which is plotting Eq. 20. As /
increases without a increasing, the object is
observed to move from far peripheral vision
toward the central horizon point. This is again the
perspective horizon effect.

0
Y (m)
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However, the observed polar angle levels off
at a non-zero value as / increases toward infinity
and never actually reaches the central horizon
point (except for the trivial case of a = 0). This is
because an object traveling in the +/ direction is
physically increasing its distance from the viewing
axis. As /increases to large values, the object loca-
tion’s y value becomes negligible in comparison,
so that the object is eventually effectively moving
in the r direction at a fixed 6 value.

Fig. 29 shows what it means to be plotting the
observed azimuthal angle ¢ as the object’s y coot-
dinate increases, but while everything else is held
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Figure 28. Plotting @ as [ increases.

Figure 29. Plotting ¢ as y increases.

Figure 30. Polar angle 6 as a function of / when y = 4 m.
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Figure 31. Observed azimuthal angle ¢ as a function of y when / = 4 m.
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constant. This is equivalent to an object thatis lat-
erally offset from the viewing axis moving in the
y direction, for various lateral locations on the
cylindrical surface. Fig. 31 shows the resulting
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plot, showing ¢ as a function of y for various
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fixed a values and at / = 4 m, which is plotting
Eq. 21. As we can clearly see, Fig. 31 shows that
an object at a positive, fixed a angle value that is
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traveling in the y direction will start at ¢ = -90°
when it is infinitely far away in the -y direction,
meaning that it is situated downward, will then
sweep through the azimuthal angles from -90° to
+90° as it travels in the y direction and passes the
observer, and then will end up at +90° when it is
infinitely far away in the +y direction, meaning
that it is situated upward. Fig. 31 also shows that
the farther away that the object is from the central
horizon point in the a direction, the more
gradually it sweeps through all of these azimuthal
angles as it travels in the y direction.

Fig. 32 shows what it means to be plotting the
observed azimuthal angle ¢ as the object’s /
coordinate increases, but while everything else is
held constant. This is equivalent to an object
moving horizontally away from the observer so
that / increases, but such that o and y are constant.

Fig. 33 shows the resulting plot, showing ¢ as
a function of / for various fixed a values when y
is held fixed at y = 4 m, which is again plotting
Eq. 21. This figure shows that as / increases, the
fixed y value becomes increasingly negligible, so
that the object appears to be approaching the +x
axis, where the azimuthal angle is zero.

If the object had a negative value for its o angle
and / increased, then it would simply appear to be

Figure 32. Plotting ¢ as / increases.

approaching the -x axis, where the azimuthal
angle is 180° (which would correspond to a plot
that would look like Fig. 33, but flipped top-to-
bottom and with the vertical axis of the plot
labeled running from 90° to 180° instead of from
0° to 90°). This is a type of horizon petrspective
effect but involving the horizon line instead of
the central horizon point.

For instance, an airplane that flies away from
the observer in the / direction (so that it steadily
increases its physical horizontal distance from the
viewing axis) but maintains a constant altitude
above the level ground will appear to be gradually
moving toward the horizon line. In the limit that
the airplane is very far away in the / direction, it
will appear to be at the horizon line.

Fig. 34 shows what it means to be plotting the

Figure 33. Obsetrved azimuthal angle ¢ as a function of / when y = 4 m.
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Figure 34. Plotting ¢ as a increases.

observed azimuthal angle ¢ as the object’s a coor-
dinate increases, but while everything else is still
held constant. This is equivalent to an object

moving horizontally along the surface of the
cylinder at a certain y offset.

Fig. 35 shows the resulting plot, showing ¢ as
a function of a for various fixed y values when /
is held fixed at / = 16 m, which is again plotting
Eq. 21. This figure shows that as a increases, the
object appears to approach the +x axis, where ¢
is zero. However, because of the angular nature
of a, the object levels off at a particular non-zero
¢ value by the time it ends up in far peripheral
vision. Note that for negative y values, the curves
would be the same as in Fig. 35, except inverted
vertically because of the way that ¢ is defined.

Figure 35. Observed azimuthal angle ¢ as a function of & when / = 16 m.
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Chapter 4

Observed Object Length

as a Function of Position

As demonstrated in the previous chapter, the
geometry of human monocular vision determines
the visually perceived positions of objects. This
geometry also determines the visually perceived
size of objects. In this chapter, we will investigate
how this geometry determines the visually per-
ceived length of objects and then, in the next
chapter, how it determines the visually perceived
area of objects.

The visually perceived length of an object
depends on the object’s true length, which is ob-
viously different from one object to the next.
Therefore, we will not focus here on the absolute
visually perceived length, but on the object’s
relative visually perceived length. We thus need to
determine the ratio of an object’s observed length
to its true length, which we can call the relative
observed length or the length magnification.

Because we are dealing with images formed on
the human retina, without the aid of any micro-
scopes, telescopes, mirrors, or additional lenses,
the image on the retina will always be smaller than
the corresponding physical object. Therefore, the
magnification values will always have an absolute
value that is less than one.

Also, even though the image on the retina is
inverted top-to-bottom and left-to-right relative
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to the physical object, and therefore the optical
magnification has a negative value, the human
brain reverses these inversions so that the images
are experienced as non-inverted. The net effect is
that the final images experienced by the brain are
oriented in the same way as the physical object,
so that the overal/ magnification values must be
positive. Therefore, the inverted images formed
on the concave spherical retina are equivalent to
non-inverted direct projections of the object onto
a corresponding convex spherical surface, as 1
have already mentioned.

A physical object that is large will have one
end at a certain observed location with a certain
magnification that corresponds to that location,
and the other end at a different observed location
with a different magnification that corresponds to
that location. This means that the total observed
length of a large physical object is found by calcu-
lating the integral of the magnification from one
end of the object to the other.

Although evaluating such an integral can be
done, it is complicated and object-dependent.
However, to understand the geometrical effects
themselves, we need only to analyze the infinites-
imal length elements, such as dx, dy, or dp. Any
real object that is sufficiently small will act to an
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excellent approximation as an infinitesimal length
element. With this in mind, we will investigate the
point-wise length magnification, which equals the
ratio of the visually perceived infinitesimal length
of an object to the corresponding true infinites-
imal length. The point-wise length magnification
therefore takes the form of a derivative.

Due to the geometry of human monocular
vision, the visually perceived length of an object,
and therefore the length magnification, depends
directly on the true location of the object in three-
dimensional space. Each magnification parameter
will therefore be a function of the object’s true
location coordinates.

In order to investigate the visually perceived
length effects separately along each dimension,
we assume that the object has length only, which
extends along the one dimension of interest, and
has no width or depth. (In a subsequent chapter
we will consider objects that extend in more than
one dimension.) For example, in order to investi-
gate the observed length effects for an object that
stretches out in the x direction, we use an object
that is point-like in the y and z dimensions and is
extended a small length dx in the x dimension.

When a length magnification parameter is the
ratio of an angular observed coordinate to a dis-
tance coordinate, the units will mismatch, thereby
reducing the meaning of that particular magnifi-
cation parameter. To avoid this, we replace each
infinitesimal angle parameter with its correspond-
ing infinitesimal arc-length parameter. Using the
standard arc-length formula from geometry, we
find that these arc lengths are:

dsp = adb (22)
dsg =rdf (23)
ds, = asinfde (24)
ds, =rsinfde (25)
ds, = lda (26)
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In Egs. 22 and 23, s4' is the arc length that is
subtending the polar angle 6 and is sitting on the
image capture sphere with the radius a, while ss is
the arc length that is subtending the same polar
angle but that is sitting on the object location
sphere with the radius 7. Whereas the polar angle
of the object’s physical location is the same as the
polar angle of the object’s observed location, the
corresponding arc lengths are not the same. We
therefore use the prime symbol to differentiate
between the two.

In Eqgs. 24 and 25, s, is the arc length that is
subtending the azimuthal angle ¢ and is sitting on
the image capture sphere with the radius a, while
sy 1s the arc length that is subtending the same
azimuthal angle but that is sitting on the object
location sphere with the radius 7. In Eq. 20, s, is
the arc length that is subtending the angle a and
is sitting on the object location cylinder.

We could choose to use the effective radius of
the human retina as the value of the image cap-
ture sphere’s radius a. However, the value for a
only determines the overall scale of the observed
lengths and not the parameter trends or their rela-
tionships. Thus, the actual value of a is irrelevant
when analyzing the geometric effects of human
monocular vision. Therefore, in order to simplify
the equations, let’s choose a value of a = 1 meter.

The point-wise length magnification is the
ratio of the infinitesimal observed length to the
corresponding infinitesimal true length, where we
first assume that the true length extends in the
direction of one of the basic coordinate dimen-
sions. Each length magnification parameter Mus
therefore follows this pattern of notation:

adf dae _
_E_E Whena—l (27)

ds{g
Ms(',/x T odx

Ultimately what matters is the total observed
relative length, and not just one component of the
observed relative length, because the eye sees the
whole object. Therefore, we will need to combine
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the components of the observed relative length
to find the total observed relative length using an
equation of the form:

2
Mtot/x \/ SG/x + Ms o/ (28)

In the derivations below, the resulting equations
are presented both as a function of the object’s
original coordinates and of spherical coordinates.

4.1 Observed Object Length in Rectangular
Coordinates/Cylindrical Coordinates About
the z Axis

Let us start by examining objects that extend in
the various dimensions of cylindrical coordinates
about the z axis. To determine the observed
length’s 59" component for an object extended in
the p direction, we take the derivative of Eq. 11
with respect to p (remembering to set a = 1 for

simplicity):

dSe _ dG d 1 B
MSB/P dp dp T dp (tan (z)) (29)
z
Msé/p = —22+p2 or (302)
M ship = cos 0 (30b)

Because Eq. 12 does not depend at all on p, any
thin object that is extended only in the p direction
will be observed to have zero width in the s,’
direction. In other words:

Mg, =0 (31)

The total observed relative length for an object
extended in the p dimension is the square root of
the sum of its components squared:

2
Moty = J ML, (32)
Miot)p = sz or (332)
Miot/p = 5 COS 6 (33b)

Let us now look at an object extended in the z
direction. In order to determine the observed
length’s s¢" component for an object extended in
the z direction, we take the derivative of Eq. 11
with respect to z:

My = =5 =5 (™ (8)) 69

p
Msé/z = —m or (3521)
Mg, =—=sinf (35b)

Note that the negative sign in Eq. 35 means that
an object at a certain position offset from the
viewing axis that extends in the positive z direc-
tion away from the observer will be observed to
be extending in the negative so’ direction, i.e.
toward the central horizon point. This is an im-
portant part of the perspective horizon effect.
For instance, if a painted stick at an arbitrary
location has its red end at a certain z value and its
blue end at a larger z value, then its blue end will
appear to be closer to the central horizon point.
The negative signs in Eq. 35 are also important in
ensuring the accuracy of subsequent derivations.

Because Eq. 12 does not depend at all on z,
any object that is extended only in the z direction
will be observed to have zero width in the s,’
direction. In other words:

Mg ), =0 (36)

The total observed relative length for an object
that is extended in the z direction is therefore:

— 2 2
Morjz = (M3, + M5, (T
M _ P
tot./z = 7,53 Of (382)
Mo/, = =sin (38b)

Let us now look at an object extended in the s,
direction. Because Eq. 11 does not depend at all
on ¢, any object that is extended only in the s,
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direction will be observed to have zero width in

the sg’ direction. In other words:

My, =0 (39)

se/sq,

In order to determine the observed length’s s,’

component for an object extended in the s,
direction, we take the derivative of Eq. 12 with
respect to s, to find:

_dsp _asinfdep _ 1
MS(,P/Slp - dse " rsinfdg r (40)
1
Ms(lp/s(p = \/ﬁ or (4121)
1
M shlse = (41b)

The total observed relative length for an object
that is extended in the s, direction is therefore:

2
Mtot /S — \/ Se/sqo + Ms /s (42)
Mtot /S(p = \/ﬁ or (4321)
1
Mtot./s(p = (43b)

Let us now look at the objects extended in the
various dimensions of rectangular coordinates. In
order to determine the relative observed length’s
s¢' component for an object that is extended in
the x direction, as a function of position, we take
the derivative with respect to x of Eq. 9 to find:

/ 2442
Mayye =gt = = i (san™ (25 oo
XZ
Msé/x - (X2+y2+22)\/m or (452,)
M ix = cos 6 cos ¢ (45b)

In order to find the relative observed length’s s,’

component for an object that is extended in the x
direction, as a function of position, we take the

derivative with respect to x of Eq. 10 to find:
ds; asinfd . d
¢ =272 —5inp =2

M —
dx dx dx

Sp/x —
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. d —1(Yy
M sh/x = smea(tan (;)) (46)
_ y
M sh/x = Nl or (47a)
1 .
Ms{p/x =—_-sing (47b)

The total observed relative length for an object
that is extended in the x direction is therefore:

2
Mtot/x \/ s! 5/x + MS /% (48)
Jy?+z2
Meor/x = a2 OF (492)
Mot /x = %\/1 —cos? @sin?6  (49b)

In order to find the relative observed length’s 5o’
component for an object that is extended in the y
direction, as a function of position, we take the
derivative with respect to y of Eq. 9 to find:

dsg _d6 _ d 1 (Vx2+y2?
Man=o o % (tan ( z )) 0
— yz
Mgy = (xz+yz+zwm or (Gl
M shiy = cos 0 sin ¢ (51b)

In order to find the relative observed length’s s,’
component for an object that is extended in the y
direction, as a function of position, we take the
derivative with respect to y of Eq. 10 to find:

dS(p asinfdo . de
Mg,y = o sin 6 &
I d -1 y
Mg,y = sin 2 (an?(2)) 2
x
M y /y \/x2+y2+22\/x2+y2 ot (53a)
M shly = cos<p (53b)

The total observed relative length for an object
that is extended in the y direction is therefore:

— 2 2
Miorsy = M2+ M3, (54)
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Voo
Mtot./y = x2+y2+22 or (552')
Miorjy = /T —sin? psin?@  (55b)

Note that the z coordinate of the rectangular
coordinate system is the same as the z coordinate
of the cylindrical coordinate system about the z
axis, and therefore the results are the same as in
Egs. 34 to 38. However, for completeness, and to
present them in rectangular coordinates, we write

them here:
_ X2y
Msé/z T X2hy2iz2 of (56a)
My, =—=sinf (56b)
Mg/, =0 7)
VxZ+y?
Miot/z = iyaiaz ©OF (582)
Meor/; = ~sin 6 (58b)

4.2 Observed Object Length in Spherical
Coordinates

In order to find the relative observed length’s s¢’
component for an object that is extended in the
s¢ direction, as a function of position, we take the
derivative with respect to sg of Eq. 13 to find:

M dsg _ adf _ 1d6
! = —_—— _
Se/Se — dsg  rd8  rde
1
Meyrso =7 )

Because Eq. 14 does not depend at all on sg, any
thin object that is extended only in the sy direction
will be observed to have zero width in the s,’
direction. In other words:

My, =0 (60)

Sp/Se
The total observed relative length for an object
that is extended in the sy direction is therefore:
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2
+M(p/59

MtOt/SG \/ sp/se

Moy, /se —

- (61)
In order to find the relative observed length’s s,
component for an object that is extended in the
s, direction, as a function of position, we take the

derivative with respect to s, of Eq. 14 to find:

M dS(p asinfde _ 1de
, o> v o Z¥Y
Sp/Se  ds rsin6d rd
) @ Y
M == 2
Se/Sp — 7 (62)

Because Eq. 13 does not depend at all on ¢, any
thin object that is extended only in the s, direction
will be observed to have zero width in the so
direction. In other words:

My, =0 (63)

Se/Se
The total observed relative length for an object
that is extended in the s, direction is therefore:

MtOt/S(p \/ Se/s(p

Moy, /S —

+ M?

Sp/Sp
(64)

Because Eqs. 13 and 14 do not depend atall on 7,
any thin object that is extended only in the r
direction will be observed to have zero width in
the s¢" and s, directions. In other words:

Ms{g/r 0 (65)
Mg ) =0 (66)
Mtot./r =0 (67)

4.3 Observed Object Length in Cylindrical
Coordinates About the y Axis

In order to find the relative observed length’s 5o’
component for an object that is extended in the
sq direction, as a function of position, we take the
derivative with respect to s, of Eq. 20 to find:
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add _ 1d6
lde ~ lda

1d lcosa
My, =-(cos?
so/sa = 1aa\°5 \JmEryz)) ¥
sina
M = ——— ofr
VJ12sin2 a+y?
1 cos @

- 7 J1—sinZ 6 sin? 1) (69b)

In order to find the relative observed length’s s,’

ds{g
Mstla/sa T dsq

(69a)

’
So/Sa

M

’
So/Sa

component for an object that is extended in the
sq direction, as a function of position, we take the
derivative with respect to s, of Eq. 21 to find:

M __dsy _ asinfdp _ sin@dg
Sp/Sa ~ dsq  lda | da
a
__sin@ d _1( y ))
MS(,P/SII Tl da (tan Isina (70)
ycosa
M = - or (71a
So/Sa JI2+y2[12 sin? a+y? (712)
1 cosfsing

M = —— 71b
Sp/Sa r \/1-sin2 @ sin2 ¢ (71b)

The total observed relative length for an object
that is extended in the s, direction is therefore:

_ 2 2
Mot /s, = \/Msé/sa + Msgp/sa (72)
1
Mot /s, = T O (732)
1
Mtot./sa == (73b)

r
In order to find the relative observed length’s 54’
component for an object that is extended in the /
direction, as a function of position, we take the
derivative with respect to / of Eq. 20 to find:
dsg _add _ do
M =0 =7 _
so/l ~ “ai ar — dl

M d COS_l lcosa

1, ==

Se/l dl /12+y2
y2cosa

Py == - o

so/ (124+y2)/12 sin2 a+y2

1 cos 6 sin 6 sin?
= — _.—.go (75b)
T /1-sin2 @ sinZ ¢

(74)

M

r (753)

Msé/l
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In order to find the relative observed length’s s,’
component for an object that is extended in the /
direction, as a function of position, we take the
derivative with respect to / of Eq. 21 to find:

dsg asinfd . d
¢ dl dl dl
Ms{p/z = sinf o (tan Py (706)
ysina

M, =— or (77a
Se/l JI2+y2[12 sinZ a+y?2 (772)

_ 1 sin6 cos@sin ¢
Mséo/l T 7 /1-sinZ6sin? (77b)

¢

The total observed relative length for an object
that is extended in the / direction is therefore:

— 2 2
Moep = M3, + M2, (78)
|yl
Moty = 57 or (792)
Mo = ~sin |sin | (79b)

In order to find the relative observed length’s 5o’
component for an object that is extended in the y
direction, as a function of position, we take the
derivative with respect to y of Eq. 20 to find:

__dsp _adf _ db

Mst;/y T dy  dy dy
_i —1( lcosa
Moy =0 (7)) @
_ lycosa
Msé/y - (12+y2),/12 sin? a+y2 or (813)
Msé/y = %cos 0 sin @ (81b)

In order to find the relative observed length’s s,’
component for an object that is extended in the y
direction, as a function of position, we take the
derivative with respect to y of Eq. 21 to find:

dsj, asinfd . d
My, =—2=222"00 = sing =2
/Y dy dy dy
-sno (o 25)
Mg,y = sin0 (tn? (X)) 2
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Isina
qu',,/y T JZ+y2[ZsinZa+y? or (83a)
1
Ms{p/y =-Cos¢g (83b)

The total observed relative length for an object
that is extended in the y direction is therefore:

— 2
Mtot./y - \/Msle/y

+ M?

R (84)

l

2 Of

Mtot./y = (85a)

33

Meorjy = /T —sin? @sin20  (85b)

Note that Eq. 85 is the same as Eq. 55. This is not
surprising because the y coordinate of the cylin-
drical coordinate system about the y axis is the
same as the y coordinate of the rectangular coor-
dinate system. Eq. 85 has been included here for
completeness and in order to represent the result
in this other coordinate system.






Chapter 5

Plotting Observed Length as a

Function of Spherical Coordinates

To acquire an intuitive sense for what the length
equations mean, we can plot the total observed
length relative to the true object length (i.e. the
length magnification) as a function of the object’s
position in spherical coordinates (7, 6, ¢). In this
way, these plots represent how the total observed
relative length of the object changes as the object
moves along one of the spherical coordinate
directions. In all of the plots below, all lengths are
shown in meters. Keep in mind that the observed
lengths correspond to a one-meter-radius image
capture sphere.

Generally, the observed length of an object
being smaller than the true length arises from two
main mechanisms.

First, the farther away the object is, the shorter
it looks because it takes up a smaller portion of
the entire view. This is a type of perspective effect
which we call the distance-perspective effect.

Secondly, for an object that is only extended
in one direction (like a pencil), it will look shorter
if it is somewhat tilted away from the observer. In
art, this effect is called “foreshortening.” If the
object is tilted so that it extends directly away
from the observer (i.e. it is extended in the r
direction), then it will appear to have zero length.
In contrast, if the object is tilted such that its
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broadside is directly viewed (i.e. it’s extended in a
direction that is perpendicular to the r direction),
then it will have zero shortening from this tilt
effect.

In the plots below, the perceived shortening
sometimes arises from the distance-perspective
effect, sometimes arises from the foreshortening
tilt effect, and sometimes arises from both. When
the object is oriented such that its broadside is
directly viewed, the total observed relative length
then only depends on how far away the object is
from the observer, which is the distance r.

The first thing to note is that all of the total
observed length equations when expressed in
spherical coordinates (i.e. Egs. 33b, 38b, 43b,
49b, 55b, 58b, 61, 64, 73b, 79b, and 85b) depend
on the r coordinate as (1/r), no matter in which
direction the object is extended and no matter
where the object is located. This means that no
matter in which direction the object is extended
and no matter where it is located, if it moves
directly away from the observer, its total observed
length decreases as (1/r). This function is plotted
in Fig. 36.

For instance, if an object directly moves to
twice the distance from the observer as originally,
then it will appear one half as long as originally.
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Figure 36. Total observed relative length as a function of 7 for: M, /.,

(6=0°), My .(0=90°), Mo, ;(0=0°), Moy ,(0=0°), Mo, ,,(6=90°,9=90°).
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Or, if an object directly moves to three times the
distance from the observer as originally, then it
will appear one third as long as originally. This is
true no matter how the object is oriented, so that
the word length may be called height if the object
is oriented vertically.

When the object is extended in the s4, 54, Of 54
direction, it is always viewed exactly from broad-
side no matter where it is located. This means that
in these three cases, the total observed relative
length depends only on r and nothing else. There-
fore, the entire equation is M = (1/r), as can be
seen in Eqs. 43b, 61, 64, and 73b. This means that
Fig. 36 shows the plot for Eqs. 43b, 61, 64, and
73b for all object locations.

Note that M is only 100% at » = 1 m, meaning
that the observed height equals the true height.
This is because we are using a one-meter-radius
image capture sphere. If we instead used an image
capture sphere with a different radius, it would
shift the location of the M = 100% point but it
would still be a (1/r) curve.

In all of the other types of situations, when the
object is at special locations where it is being
viewed broadside, the M equation reduces down
to M = 1/r and looks exactly the same as in Fig.
36. In other words, Fig. 36 is also the exact same

5

M,

tot./sp>

M,

tot./sa>

6 7 8 9 10

r(m)
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resulting plot for when the object is extended in
the p direction (Eq. 33b) at the locations where
0 = 0°, for when the object is extended in the z
direction (Egs. 38b and 58b) at the locations
where 6 = 90°, for when the object is extended in
the x direction (Eq. 49b) at the locations where
0 = 0°, for when the object is extended in the y
direction (Eqgs. 53b and 85b) at the locations
where § = 0°, and for when the object is extended
in the / direction (Eq. 79b) at the locations where
6 = 90° and ¢ = 90°.

To be clear, even when the object is sitting at
any other location besides these special locations,
the object’s observed length will still decrease at a
rate of (1/r) if the object moves directly in the r
direction, no matter the direction that the object
is extended in. Although, the associated equation
/)

The (1/r) dependence means that if an object

may be more complicated than just M =

moves directly away from the observer at a con-
stant true velocity, its visually perceived length
would shorten quickly at first and then would
shorten more gradually later on. In the limit that
the object moves infinitely far away, its perceived
length reduces to zero. For instance, the distant
stars are so far away from the earth, that they
appear as point particles of light with zero length.
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Figure 37. Plotting Mot as 0 increases.

Fig. 37 shows what it means to be plotting the
object’s total observed relative length when the
object is extended in the p direction (the object is

Figure 38. Total observed relative length M,

shown in blue), as the polar angle 6 is increased,
but its distance » from the observer is held con-
stant. This is an object that is extended directly
away from the viewing axis and is moving away
from the viewing axis in the 6 direction such that
it holds a constant distance r from the observer.
Fig. 38 shows the resulting plot, showing Mo, as
a function of @ for various fixed r values, which
plots Eq. 33b.

The farther away that the object is from the
viewing axis in the @ direction, the shorter it will
appear. Note that the data points in a given line
in Fig. 38 represent the different locations that all

have the same r value.

ot 28 a function of 6.
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Figure 39. Total obsetved relative length M, , for central vision.
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T

W

Figure 40. Plotting Mo as 6 increases.

Therefore, the progressive shortening as 6
increases is solely due to the object tilting away
from the viewer as it maintains a p orientation,
and not from the distance-perspective effect.

Fig. 39 shows the exact same information as in
Fig. 38, but now only for the central region of
vision. As Fig. 39 shows, if the object maintains a
fixed overall distance 7, an object that is extended
in the p direction looks approximately the same
length no matter where it is located, as long as it
stays within the central region of vision. In other
words, an object that continues to be extended in
the p direction does not observably tilt as it moves
around, if it stays within central vision.

Fig. 40 shows what it means to be plotting the
object’s total observed relative length when the

B

Figure 41. Plotting Mot as 0 increases.

object is extended in the z direction, as the polar
angle 6 is increased, but its distance » from the
observer is held constant. Fig. 42 then shows the
resulting plot, showing M. as a function of 8 for
various fixed 7 values, which is the plot of Eqs.
38b and 58b. On the viewing axis (at 8 = 0°) the
object appears to have zero length because it is
oriented so that it extends directly away from the
observer. As the object moves in the € direction
but remains extended in the z direction, Fig. 42
shows that the object appears to get larger. The
farther away that the object is from the viewing
axis in the 6 direction, the longer it appears.
Note that the data points in a particular line in
Fig. 42 represent the different locations that all
have the same 7 distance. Therefore, the visually

Figure 42. Total observed relative length M, , as a function of 6.
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Figure 43. Total observed relative length M,

100

ot as a function of 6.

Altot./x (%)

20
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40

perceived progressive lengthening that happens
as 0 increases is solely due to the object tilting
toward broadside viewing as it remains extended
in the z otientation, and not from the distance-
perspective effect.

Fig. 41 shows what it means to be plotting the
object’s total observed relative length when the
object is extended in the x direction, as the
object’s @ coordinate is increased.

Fig. 43 shows the resulting plot, showing Miox
as a function of 0 for various fixed ¢ values when
r = 1 m, which is the plot of Eq. 49b. On the
viewing axis, the object has its maximum length
because it is being viewed broadside there. As the
object moves in the 6 direction, Fig. 43 shows
that the object appears to get shorter. Because the

Y

Figure 44. Plotting Mot as 0 increases.

50 60 70 80 90
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object maintains the same overall distance 7 from
the observer, the change in observed length is
arising purely from the tilt effect.

Fig. 44 shows what it means to be plotting the
object’s total observed relative length when the
object is extended in the y direction, as the
object’s 8 coordinate is increased.

Fig. 46 shows the resulting plot, showing Mio
as a function of 8 for various fixed ¢ values when
r =1 m, which is the plot of Eqgs. 55b and 85b.
On the viewing axis, the object has its maximum
observed length because it is being viewed
broadside there. As the object moves in the 6
direction, Fig. 46 shows that the object appears to
get shorter. Because the object maintains the
same overall distance » from the observer, the

Figure 45. Plotting Mio.z as 0 increases.
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Figure 46. Total observed relative length M,
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oty 38 2 function of 6.
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Figure 47. Total observed relative length M, , as a function of 6.
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change in observed length is arising purely from
the tilt effect.

Fig. 45 shows what it means to be plotting the
object’s total observed relative length when the
object is extended in the / direction, as the
object’s 0 coordinate is increased.

Fig. 47 shows the resulting plot, showing Mot
as a function of @ for various fixed ¢ values when
r = 1 m, which is the plot of Eq. 79b. On the

40

50 60 70 80 90

()
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viewing axis, the object has zero observed length
because it is extended directly away from the
observer. As the object moves in the § direction,
Fig. 47 indicates that the object appears to get
longer. Because the object maintains the same
overall distance 7 from the observer, the change
in observed length is arising purely from the tilt
effect.



Chapter 6

Plotting Observed Length as a
Function of Original Object Coordinates

Instead of plotting the total observed lengths as a
function of spherical coordinates, which repre-
sented an object moving in the r, 6, or ¢ direc-
tions, we can plot them as a function of the
original object coordinates. In this way, we can
see how an object extended, for instance, in the x
direction changes its observed length as it travels
in the y direction.

Note that plotting as a function of the object
location coordinates of 8 and ¢ is the same thing
as plotting as a function of the observed spherical
coordinates, and therefore leads to the same plot
shown in Fig. 36. For this reason, they will not be
plotted again here. This leaves us with the task of
plotting the visually perceived lengths of objects
that extend in rectangular coordinate directions as

Figure 48. Plotting M. as p increases.
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they move in rectangular coordinate directions, as
well as plotting the visually perceived lengths of
objects that extend in the cylindrical-about-the-y-
axis coordinate directions as they move in cylin-
drical-about-the-y-axis coordinate directions.

Fig. 48 shows what it means to be plotting the
object’s total observed relative length when the
object is extended in the p direction, as the ob-
ject’s p coordinate is increased, but everything
else is held constant, which is plotting Eq. 33a.
Fig. 49 shows what it means to be plotting the
object’s total observed relative length when the
object is extended in the z direction, as the ob-
ject’s z coordinate is increased, but everything else
is held constant, which is plotting Eq. 38a.

The situation shown in Fig. 48 is equivalent to

\‘

W

Figure 49. Plotting Mo as z increases.
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Figure 50. Total observed relative length M,

ot 38 a function of p.
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an object that is extended directly away from the
viewing axis and is moving away from the viewing
axis. Fig. 50 shows the resulting plot, showing
Moy as a function of p for various fixed z values.
On the viewing axis (at p = 0) the object has its
maximum observed length because it is being
viewed broadside and is relatively close to the
viewer. As the object moves in the p direction at
a constant true velocity, Fig. 50 shows that the
object visually appears to become shorter quickly
at first and then more gradually later on. This is
because, as the object moves in the p direction, it
gets farther away from the observer and also it
becomes more tilted away from the observer.
Due to mathematical symmetries, Fig. 50 also
shows the plot of the situation shown in Fig. 49

\

4

S\

Figure 51. Plotting Miot.» as z increases.

p (m)
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after appropriately relabeling the axes.

Fig. 51 shows what it means to be plotting the
object’s total observed relative length when the
object is extended in the p direction, as the ob-
ject’s z coordinate is increased, but everything else
is held constant, which is plotting Eq. 33a. The
situation in Fig. 51 is equivalent to an object that
is extended directly away from the viewing axis
and is moving in the z direction.

Fig. 52 shows what it means to be plotting the
object’s total observed relative length when the
object is extended in the z direction, as the ob-
ject’s p coordinate is increased, but everything
else is held constant, which is plotting Eq. 38a.

The resulting plot of the situation in Fig. 51 is
shown in Fig. 53, showing Mo, as a function of

B

W

Figure 52. Plotting Moz as p increases.
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Figure 53. Total observed relative length M,

as a function of z.
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z for various fixed p values. As expected, the
father away that the object is from the observer
in the z direction, the shorter it appears. For an
object not on the viewing axis (i.e. not at p = 0),
it is observed to have no length when at z = 0.
This is because the object is located directly to the
side of the observer (at # = 90°) and is therefore
titled directly away from the observer. Each of the
curves in Fig. 53 (except the p = 0 curve) starts
0 and rapidly

out very small when close to z =
increases at first as z increases. This is because the
object is quickly becoming tilted toward broad-
side-viewing as z increases. Then the observed
length decreases because the object is getting far
away. Note that the red (p = 0) curve is at 100%

when z = 1 m. This is because we are using a one-

Y

Figure 54. Plotting Mot as X increases.
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meter-radius image capture sphere and the object
is literally on this sphere at this point and is being
viewed broadside. There are no data points for
the red curve for z < 1 m because that would be
inside the imaging sphere.

Due to mathematical symmetries, Fig. 53 also
shows the plot of the situation shown in Fig. 52
after relabeling the horizontal axis as p, the legend
as z, and the horizontal axis as Mo /z.

Fig. 54 shows what it means to be plotting the
object’s total observed relative length when the
object is extended in the x direction, as the ob-
ject’s x coordinate is increased, which is the plot
of Eq. 49a.

Fig. 55 shows what it means to be plotting the
object’s total observed relative length when the

:Z

W

Figure 55. Plotting Mot as y increases.



Chapter 6. Plotting Observed Length as a Function of Original Object Coordinates

Figure 56. Total observed relative length M,

as a function of x withz =1 m.
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Figure 57. Total observed relative length M, , as a function of x with z =2 m.
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object is extended in the y direction, as the ob-
ject’s y coordinate is increased, which is the plot
of Eq. 55a.

Fig. 56 shows the resulting plot for the situa-
tion shown in Fig. 54, which shows M. as a
function of x for various fixed y values. Atx = 0,
the object’s observed length is at a maximum
because it is being viewed broadside.

As the object starts far off to the left and
moves in the x direction, Fig. 56 shows that the
object appears to get larger as it approaches the
viewing axis, both because it is getting closer and
because it is getting tilted more toward broadside.

0

2 4 6 8 10

x (m)
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Fig. 57 shows the exact same information as is
shown in Fig. 56, but with z = 2 m.

Due to mathematical symmetries, Figs. 56 and
57 also show the plots arising from the situation
presented in Fig. 55. We now move on.

The situations listed in Table 1 and shown in
Figs. 58 to 63 have the exact same mathematical
forms and all have the same resulting plot, which
is shown in Fig. 64.

Keep in mind that that the z coordinate of the
rectangular coordinate system and the z coor-
dinate of the cylindrical coordinate system about
the z axis are exactly the same.
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Table 1. These situations all have the same plot shown in Fig. 64 after appropriate relabeling of axes.

Length element As a function of For various fixed Equation Figure
Miovs v x Eq. 492 Fig. 58
Miovs z X Eq. 492 Fig. 59
Moty X y Eq. 552 Fig. 60
Miory % Eq. 55a Fig. 61
Mo z Eq. 58a Fig. 62
Moz y z Eq. 58a Fig. 63

P

W

.

4

S

Figure 58. Plotting Mo« as y increases.

%
X
Z

Figure 60. Plotting Mo as X increases.
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P

Figure 62. Plotting Mo as X increases.
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Figure 59. Plotting Mot as z increases.
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Figure 61. Plotting Mio» as z increases.
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Figure 63. Plotting Motz as y increases.
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Figure 64. Total observed relative length M, , as a function of y with z = 1 m.
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Fig. 65 shows what it means to be plotting the v cootrdinate is increased. Fig. 66 shows what it

object’s total observed relative length when the means to be plotting the object’s total observed

object extends in the s, direction, as the object’s relative length when the object extends in the s,

Y

Figure 65. Plotting Miotsq as y increases. Figure 66. Plotting Miot./s« as [ increases.

Figure 67. Total observed relative length M, , as a function of y.
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Figure 68. Plotting Mot as y increases.

direction, as the object’s / coordinate is increased.
Fig. 67 shows the resulting plot for the situation
in Fig. 65, showing Mo/« plotted as a function of
v for various / values, which is the plot of Eq. 73a
as y changes.

As an object at / = 0 moves in the y direction
away from y = 0, it becomes progressively shorter
because it gets farther away from the observer. At
the same time, the object continues being exactly
broadside viewed. For the curves with higher /
values, the general trend remains the same but the
object becomes shorter more gradually because it
is already farther away.

Because of mathematical symmetry, the plot
for the situation in Fig. 66, which is the plot of
Eq. 73a as a function of /, looks exactly like the
plot in Fig. 67 (after appropriately relabeling the

Figure 69. Plotting Mo as [ increases.

axes and realizing that / is always positive).

Fig. 68 shows what it means to be plotting the
object’s total observed relative length when the
object is extended in the / direction, as the ob-
ject’s y coordinate is increased. Fig. 69 shows
what it means to be plotting the object’s total
observed relative length when the object is exten-
ded in the y direction, as the object’s / coordinate
is increased. Fig. 70 shows the resulting plot for
the situation in Fig. 68, showing Mo plotted as a
function of y for various / values, which is the plot
of Eq. 79a.

For an object with / = 1, it is observed to have
no length when at y = 0. This is because the
object is extended directly away from the obser-
ver at y = 0. For objects with / < 1, there are no
data points at or near y = 0 because that would

Figure 70. Total observed relative length M, ; as a function of y.
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J

Figure 71. Plotting Mo/ as [ increases.

correspond to being inside the imaging sphere.

Each of the curves (except the / = 0 curve) in
Fig. 70 starts out very small when close to y = 0
and rapidly increases at first as y increases. This is
because the object is quickly becoming tilted
more toward broadside-viewing as y increases.
Then later the observed length decreases because
the object is getting farther away. Because of
mathematical symmetry, the plot for the situation
in Fig. 69, which is the plot of Eq. 86 as a function
of [, looks exactly like the plot in Fig. 70 (after
appropriately relabeling the axes and realizing
that / is always positive). The observed relative
lengths change for the same reasons.

Fig. 71 shows what it means to be plotting the
object’s total observed relative length when the
object is extended directly in the / direction, as the

Figure 72. Plotting Mo as y inctreases.

object’s I coordinate is increased. Fig. 72 shows
what it means to be plotting the object’s total
observed relative length when the object is ex-
tended in the y direction, as the object’s y coor-
dinate is increased. Fig. 73 shows the resulting
plot for the situation in Fig. 71, showing M
plotted as a function of / for various y values,
which is the plot of Eq. 79a.

Fig. 73 shows that the object has a peak ob-
served length at / = 0 (i.e. when the object is
directly overhead or underfoot of the viewer).
This is because the object is being viewed exactly
broadside at these locations. The object shortens
as it moves in the / direction because it is getting
farther away and because it’s tilting away. Because
of symmetry, the plot for Fig. 72, which is the plot
of Eq. 85a, looks exactly like the plot in Fig. 73.

Figure 73. Total observed relative length M, , as a function of /.
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Chapter 7

Observed Sphere Diameter

as a Function of Position

If an object has a shape that is extended in more
than one direction, then the length equations will
not be enough. Instead, several length equations
should be applied together in order to find areas,
as will be one in Chapter 8. However, for the case
of a spherical object, the situation is especially
simple. Such an object has the special property
that the object as a whole never tilts away from
the viewer. In other words, a sphere that is held
at a fixed distance always looks exactly the same
size no matter how the sphere is oriented.

A sphere is visually equivalent to a flat circle
of the same radius being oriented so that it is
always being viewed exactly broadside. In terms
of the coordinate systems used above, this is
equivalent to an object always being extended
along spherical coordinate directions. Therefore,
the observed relative diameter equation for a
sphere is the same as Eq. 61. Specifically, a small
sphere with a true diameter d will be observed as
a circle with an observed relative diameter of:

1

Mtot./d =, o (80)
1

Mot ja = T (87)
1

Mot jqa = Torrz O (88)
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M _ 1
tot./d W

Eqgs. 86 to 89 all mean the same thing but are

(89)

expressed in the various coordinate systems.
Because a sphere does not involve the tilt effect,
its observed size depends only on its overall
distance r from the observer (as usual, we are
assuming that the object is small enough that the
equations above can be used directly without
integration). The plot of Eq. 86 is the same as
shown in Fig. 36.

Fig. 74 shows what it means to be plotting the
object’s total observed relative diameter when the
object is a sphere, as the object’s x coordinate is

\y

I\

Figure 74. Plotting Mot as X increases.
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Figure 75. Total observed relative diameter M, ,; as a function of x when z = 0.
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increased. The resulting plot is shown in Fig. 75,
showing Mia plotted as a function of x for
various y values when z = 0, which is the plot of
Eq. 87. Because of mathematical symmetry, the
plot in Fig. 75 is exactly what you get when you

0

2 4 6 8 10

x (m)

50

plot Eq. 87 as a function of y, Eq. 87 as a function
of z, Eq. 88 as a function of p, Eq. 88 as a function
of z, Eq. 89 as a function y, and Eq. 89 as a
function of / (with the appropriate relabeling of
the axes and range limitations).



Chapter 8

Observed Object Area

as a Function of Position

We next investigate how the geometry of human
monocular vision determines the observed area
of objects. As was the case with observed length,
the observed area depends on the true object area,
which is different from one object to the next.
Therefore, of importance here is not the absolute
observed area, but the relative observed area,
which is calculated relative to the true area of the
object. We therefore need to analyze the ratio of
the observed area to the actual area, which we will
call the relative observed area or the area magnifi-
cation.

As with length magnification, area magnifica-
tion values will also be less than one because we
are dealing with the naked eye when no mirrors,
lenses, telescopes, or microscopes are involved.

Just as was the case with lengths, when the
relative observed area relates an angle parameter
to a meter parameters, the units mismatch, giving
the associated magnification a confusing and less
useful meaning. To avoid this, we again transform
each angle-length parameter to a meters-length
parameter, just like we did before, and assume an
imaging sphere with a radius of one meter.

A large object will have one of its parts seen at
one location with a certain magnification and
other parts at other locations seen with different

51

magnifications. Calculating the total area would
therefore require evaluating integrals over many
locations in an object-specific way. However, to
make more general statements, we therefore again
focus on small objects that can be approximated
as existing at a single location, meaning that we
use derivatives. The point-wise area magnifica-
tion is the ratio of the observed small-object area
to the true small-object area.

For small two-dimensional patches that are
extended in coordinate directions of smoothly-
varying coordinate systems, the patch is approxi-
mately flat and thus the patch can be assumed to
be a flat rectangle with an area equal to its width
times its height. For instance, the true area of a
small patch extended in a plane parallel to the x-y
plane is dA., = dx dy. When a rectangular patch is
projected onto the image capture sphere, which is
also locally flat on small scales, we end up with a
parallelogram-shaped patch.

One pair of sides of the parallelogram extends
in the /; direction and has the length d/; and the
other pair of sides extends in the /[ direction and
has the length dl,. In other words, dl; is the ob-
served line on the image capture sphere that
corresponds to two edges of the true rectangular
patch and dl» is the line on the imaging sphere that
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corresponds to the other two edges of the true
rectangle.

In general, the line segments d/i and dI, are not
necessarily perpendicular (i.e. the parallelogram is
not necessarily a rectangle), and thus we must
calculate the area of a parallelogram that is not
necessarily a rectangle. Also, dli does not typically
extend in just the s¢’ direction or just the s,
direction, but extends in an odd direction, with an
s¢' component and an s," component. Similarly,
dl, extends in an odd direction.

The best method of calculating the area of a
parallelogram with sides extending in odd direc-
tions is using the magnitude of the cross product:

dAgbserved = |dil X dizl

Because we are dealing with a very small patch of
area, the spherical image capture surface is locally
flat and we can compute the cross product of the
vectors with the 7, s¢', and s,” components, as if it
were a rectilinear coordinate system:

dAobserved = | (dll,sédlz,s(’p - dll,s(’pdlz,s’e) r
+ (dly gy dly = dly il ) @

+(diypdly g — dl, g dly, ) )

The observed patch of area always lies on the
image capture sphere and never extends in the »
direction, meaning that the » components are all
zero: di, = 0 and da, = 0, leading to:

dAobserved = dll,sédlz,s(’p - dll,S(’pdlz,Sé

We can expand each length element, keeping in
mind that the edges of the true patch are extended
in coordinate directions.

dAobserved =
dal, i dal 1 dal. 1 dal
1,s 2,8 1,s 2,8
dx—2dy — ——Ldx—Ldy

dx dy dx dy

dal_ , dl, i dal. s dl_

1,8 2,8 1,8 2,8

— [2] ¢ _ 14 6 dxdy
dx dy dx dy
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dal , dl

1,59
dx

dal, o, dl
15

dx dy

! !
259 2,59

dy

dA

X,y

We can now write down the relative observed
area, which is the observed area divided by the

true area.
dAobserved — dll'sle dlz‘szp _ dll'szp dlz'SIG
dAy,y dx dy dx ay
dAobserved _ | |
dngy |\ MsprMsiyry = MsiyxMsg

To be consistent with our other notation, we can
label the observed relative area, which is also
called the area magnification, using the notation:

_ dAopserved
Mobs.jxy = Ay,

so that we finally have:

Mobs./xy = s(’,/st{,,/y - Mséo/sté/y (0)
All other types of object area patches will follow

the same formulation.

8.1 Observed Object Area in Rectangular
Coordinate/Cylindrical Coordinates About
the z Axis
Inserting the appropriate observed relative length
equations from Eqgs. 29 to 57 into the appropriate
area magnification definitions such as Eq. 90, we
find the equations below. Mathematically work-
ing out the extensive details is left to the reader.
For a small patch of area that lies in a plane
that is parallel to the x-y plane, it has the area
magnification:

z
Mobs./xy = (x2+y2+22)3/2 of o1

1
Mobs./xy = — Cos 0 (92)

For a small patch of area that lies in a plane that
is parallel to the x-z plane, the patch has the area
magnification:

_ |y or
(x2+y2+22)3/2

Mobs./x,z (93)
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1 . .
Mobs./x,z = r_ZSIH 6 |sin ¢| (94)

For a small patch of area that lies in a plane that
is parallel to the y-z plane, the patch has the area

magnification:
M S E— 95
0bs./y,.z T (y21y24,2)3/2 of ©5)
1,
Mobs./y,z = —sin 6 |cos ¢| (96)

For a small patch of area that extends in the p and
z directions, the patch has the area magnification:

Mobs./p,z =0 O7)

For a small patch of area that extends in the p and
s, directions, the patch has the area magnification:

M or

©8)

z
ObS./p,S(p - (22+p2)3/2

1
Mobs./p,sq, =z COS 6 99)

Note that Eqs. 92 and Eq. 99 are the same equa-
tion because both represent a patch of area in a
plane parallel to the x-y plane.

For a small patch of area that extends in the s,
and z directions, it has the area magnification:

(100)

_ 4
MObS./S<p,Z - (Zz+p2)3/2 or

Mobs. s,z = =5Sin 0 (101)
8.2 Observed Object Area in Spherical
Coordinates
Inserting the appropriate observed relative length
equations from Egs. 59 to 66 into the appropriate
area magnification definitions, we find the equa-
tions below.

For a small patch of area that lies on the object
coordinate sphere, i.e. is extending in the sy and
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s, directions, it has the area magnification:

1

Mobs./s(;,sq, =2

(102)
Because the object location surface is a sphere
and the image capture surface is a sphere, the only
object area patch that can be observed as a non-
zero image area patch is the one represented in
Eq. 102. All other possibilities are expected to be

zero, as can be verified by doing the calculation:

Mobs./r,sq, = Mobs./r,59 =0 (103)
8.3 Observed Object Area in Cylindrical
Coordinates About the y Axis
Inserting the appropriate observed relative length
equations from Eqs. 68 to 83 into the appropriate
area magnification definitions, we find the equa-
tions below.

For a small patch of area that extends in the s,

and / directions, it has the area magnification:

_ 4
Mobs./sa,l = or

(12+y2)3/2 (104)

1 . .
Mobs. /st = -2z 51 0 [sin | (105)

Note that Eqgs. 104 and 105 are the exact same as
Eqgs. 93 and 94 because they both involve area
patches in the same plane.

For a small patch of area that extends in the s,
and y directions, it has the area magnification:

l

Mobs./sa,y = m or

(106)

Mobs. /sy = riz\/l — sin? @sin? ¢ (107)
For a small patch of area that extends in the / and

y directions, it has the area magnification:

Mobs./l,y =0 (108)






Chapter 9

Plotting the Observed Object Area as a

Function of Spherical Coordinates

To get an intuitive sense of what the area equa-
tions mean, we can plot the observed relative area
as a function of the object’s position in spherical
coordinates (r, 0, ¢). In this way, these plots
represent how the observed relative area of the
object changes as the object moves along one of
the spherical coordinate directions. In all of the
plots below, all areas are shown in square meters.
Keep in mind that the observed areas correspond
to a one-meter-radius image capture sphere.

Generally, the observed area appearing smaller
than the true area arises from two mechanisms.
First, the farther away the object, the smaller it
looks because it takes up a smaller portion of the
entire view. As mentioned previously, this is the
distance-perspective effect. Secondly, an object
that is only extended in two directions (like a
credit card), will look smaller if it is somewhat
tilted away from the observer. If the object is
tilted so that it lies in a plane that extends directly
away from the observer (i.e. it extends in the r
direction), then it will appear to have zero area. In
contrast, if the object is tilted so that its broadside
is directly viewed (L.e. it lies in a plane that is
perpendicular to the r direction), then it will have
zero shrinking from this tilt effect.

In the plots below, the perceived diminished
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size sometimes arises from the distance-perspec-
tive effect, sometimes from the tilt effect, and
sometimes from both effects. When the object is
oriented so that its broadside is directly viewed,
the total observed relative area then only depends
on how far away the object is from the observer,
which is the distance 7.

The first thing to notice is that all of the
observed area equations in spherical coordinates
(Egs. 92, 94, 96, 99, 101, 102, 105, and 107)
depend on r as (1/r%), even if they depend on
other coordinates, no matter in which direction
the object is extended and no matter where the
object is located. This means that no matter in
which direction the object is extended and no
matter where it is located, if it moves directly
away from the observer, its total observed area
will decrease as (1/7°).

For instance, if a patch of area moves directly
to twice the distance from the observer as it was
originally, then it will appear to have an area that
is one fourth as large as originally. Or, if a patch
of area moves to three times the distance from
the observer as it was originally, then it will appear
to have an area that is one ninth as large as
originally. This is true no matter how the object is
oriented. It should make sense that the observed
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Figure 76. Observed relative area for: M,

Mobs./x,z(0:9003¢:i9oo)s Mo
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area depends on r as (1//7) when we remember
that the observed length of a line depended on
as (1/r). Any patch of area that is small enough
acts like a square patch, and the area of a square
is width squared, so that the r-functionality part
of all area equations should be (1/r)(1/r) = (1/77),
as they are.

This dependence is plotted in Fig. 76. Note
that the observed relative area is 100% at » = 1
because we are using a one-meter-radius image
capture sphere. For r < 1, the object is inside the
image capture sphere and there is no image.

When the patch of area is extended in the so
and s, directions, it is always viewed exactly from
broadside no matter where it is located. This
means that in this case, the observed relative area
depends only on r and nothing else. Therefore,
the entire area equation is M = (1/#7), as can be
seen in Eq. 102. This means that Fig. 76 shows
the observed area for this case for all locations of
the object.

In all the other cases, when the object is at
special locations where it is being viewed broad-
side, the corresponding area M equation reduces
down to M = (1//%) and the plot looks the same
as in Fig. 76. In other words, Fig. 76 is also the
exact same plot that results for when the object is

5

6 7 8 9 10

7 (m)
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extended in the following ways: in the x and y
directions at the locations where 8 = 0° (Eq. 92),
when it’s extended in the x and z directions at the
locations where 8 = 90° and ¢ = +90° (Eq. 94),
when it’s extended in the y and z directions at the
locations where 8 = 90° and ¢ = 0° (Eq. 96),
when it’s extended in the p and s, directions at the
locations where 8 = 0° (Eq. 99), when it’s extend-
ed in the s, and z directions at the locations where
0 =90° (Eq. 101), when it’s extended in the s, and
[ directions at the locations whete 8 = 90° and
¢ = £90° (Eq. 105), and when it’s extended in the
sq and y directions at the locations where § = 0°
(Eq. 107).

Note that for situations where the object is
extended in the p and z directions (Eq. 97), in the
r and s, directions (Eq. 103), or in the r and so
directions (Eq. 103), the object has zero observed
area because it is tilted so that it extends directly
away from the observer.

Fig. 77 shows what it means to be plotting the
object’s observed relative area when the object is
extended in the x and y directions (the object is
shown in blue), as the object’s 6 coordinate is
increased, but its distance r from the observer is
held constant. Fig. 78 shows what it means to be
plotting the object’s observed relative area when
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Figure 77. Plotting Mobs. 4,y as 0 increases.

the object is extended in the p and s, directions,
as the object’s € coordinate is increased, but its
distance r from the observer is held constant. Fig.
79 shows the resulting plot of Mops.xy as a function
of 0 for various fixed r values, which is the plot
of Eq. 92 and the situation shown in Fig. 77.

Because the overall distance from the observer
r is being held constant for each curve, the change
in observed area along a curve is purely a result of
the tilt effect. Fig. 79 is also the exact same plot
that results when plotting Mobs..sp as a function of
0 for various fixed r values, which is the plot of
Eq. 99 and the situation shown in Fig. 78.

Fig. 80 shows what it means to be plotting the
object’s observed relative area when the object is
extended in the x and z directions, as the object’s

Figure 79. Observed relative area M,

/

A

B
>

¥

/

Figure 78. Plotting Mobs.p.sp as 0 increases.

6 coordinate is increased for various fixed ¢
values for r = 1. Fig. 81 shows what it means to
be plotting the object’s observed relative area
when the object is extended in the s, and / direc-
tions, as the object’s 6 coordinate is increased for
various fixed ¢ values for r = 1.

Fig. 82 shows the resulting plot of Mops.xz as a
function of € for various fixed ¢ values, which is
the plot of Eq. 94 and is the situation shown in
Fig. 80. Because the overall distance from the
observer 7 is being held constant for each curve,
the change in observed area along a curve is
purely a result of the tilt effect. Fig. 82 is also the
exact same plot that results when plotting Mobs /s,
as a function of € for vatious fixed ¢ values, which
is shown in Fig. 81 and is the plot of Eq. 105.

bs./y A8 2 function of 6.

(%)
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Figure 80. Plotting Mops.x- as 6 increases. Figure 81. Plotting Mobs. 54, as 8 increases.
Figure 82. Observed relative area My 4 . as a function of 6 for 7 = 1 m.
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Fig. 83 shows what it means to be plotting the showing Mobs;y- as a function of @ for various
object’s observed relative area when the object is fixed ¢ values, which is the plot of Eq. 98.
extended in the y and z directions, as the object’s Because the overall distance from the observer
6 coordinate is increased for various fixed ¢ r is being held constant for each curve, the change
values for » = 1. Fig. 85 shows the resulting plot, in observed area along a curve is a result of tilt.

T
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X
z
\
Figure 83. Plotting Mops - as 6 increases. Figure 84. Plotting Mobs.s0,- as 0 increases.
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Figure 85. Observed relative area My 4,
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Figure 86. Observed relative area M
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Figure 87. Observed relative area M, /4,
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Fig. 84 shows what it means to be plotting the
object’s observed relative area when the object is
extended in the s, and z directions, as the object’s
6 coordinate is increased for various fixed r
values. Fig. 86 shows the resulting plot, showing
Mobssp- as a function of 0 for various fixed r
values, which is the plot of Eq. 101. Because the
overall distance from the observer r is being held
constant for each curve, the change in observed
area along a curve is purely a result of the tilt
effect.

Fig. 88 shows what it means to be plotting the
object’s observed relative area when the object is
extended in the s, and y directions, as the object’s
6 coordinate is increased for various fixed ¢

values when r =

1. Fig. 87 shows the resulting

60

Figure 88. Plotting Mobs sa,y as 0 increases.

plot, showing Mopsisey as a function of 6 for
various fixed ¢ values when r = 1, which is the
plot of Eq. 107. Because the overall distance from
the observer r is being held constant for each
curve, the change in observed area along a curve
is purely a result of the tilt effect.



Chapter 10

Plotting the Observed Object Area as a
Function of Original Object Coordinates

We can now plot the area equations as a function
of the object’s position in rectangular coordi-
nates, cylindrical coordinates about the z axis, and
cylindrical coordinates about the y axis. The situa-
tions listed in Table 2 and shown in Figs. 89 to 95
all have the exact same mathematical form. Thus,
all of these situations have the same resulting plot,

which is shown in Fig. 96. Note that the situations
shown in Figs. 89, 90, and 91 only exactly match
the plot in Fig. 96 when the third coordinate is
zero. However, when the third coordinate is not
zero in these cases, the resulting plot still has the
same trends as in Fig. 96 but is simply scaled
uniformly smaller.

Table 2. The situations that all have the same plot, shown in Fig. 96, after appropriate relabeling of axes.

Area patch As a function of For various fixed Equation Figure
Mbs sy z xory Eq. 91 Fig. 89
Mobs .2 Y xorz Eq. 93 Fig. 90
Movs .z X yorz Eq. 95 Fig. 91
Movs.sp,s0 p Eq. 98 Fig. 92
Mobs /sy .2 % Eq. 100 Fig. 93
Mobs /50,1 / Eq. 104 Fig. 94
Mbs /s,y y Eq. 106 Fig. 95

o

Y

—
<

P

Figure 89. Plotting Mops.4,y as z increases.

W

Figure 90. Plotting Mobs.x- as y increases.
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V \
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Figure 91. Plotting Mbs.4,- as X increases. Figure 92. Plotting Mobs.j,sp as z increases.
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Figure 93. Plotting Mops./sp,- as p increases. Figure 94. Plotting Mobs. /50,1 as Y increases.
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Figure 95. Plotting Mobssa,y as [ increases.

/

i

/

62



Chapter 10. Plotting the Observed Object Area as a Function of Original Object Coordinates

Figure 96. Observed relative area My, 4\, as a function of z for y = 0 m.
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The situations listed in Table 3 and shown in
Figs. 97 to 106 all have the exact same mathema-
tical forms. Therefore, all of these situations have
the exact same resulting plot, which is shown in
Fig. 107, after appropriate relabeling of the axes.
Note that the situations shown in Figs. 97 to 102
only exactly match the plot in Fig. 107 when the
third coordinate is zero. However, when the third
coordinate is not zero in these cases, the resulting
plot still has the same trends as in Fig. 107 but is

simply scaled uniformly smaller.

In all of the situations listed in Table 3, the de-
creasing observed size is a result of the distance-
perspective effect and the tilt effect. In each of
these situations, as the object moves away from
the viewing axis or away from the observer, as the
case may be, it is observed to tilt at the same rate
as the other situations and to increase in distance
from the observer at the same rate as the other
situations.

Table 3. The situations that all have the same plot, shown in Fig. 107, after appropriate relabeling of axes.

Area patch As a function of For various fixed Equation Figure
Mobs ey x z Eq. 91 Fig. 97
Mobvs ey Y z Eq. 91 Fig. 98
Mobs vz x y Eq. 93 Fig. 99
Mobs vz z y Eq. 93 Fig. 100
Mobs. 2 y x Eq. 95 Fig. 101
Mobs .2 z X Eq. 95 Fig. 102
Mobs.sp,s0 p z Eq. 98 Fig. 103
Mobs s,z z p Eq. 100 Fig. 104
Mobs sai / y Eq. 104 Fig. 105
Mobvs ssay y / Eq. 106 Fig. 106
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\‘y \‘y

Figure 97. Plotting Mops.4,y as X increases. Figure 98. Plotting Mobs.4,, as ¥ increases.
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Figure 99. Plotting Mops..- as X increases.
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Figure 100. Plotting Mg 1.z as z increases.
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Figure 101. Plotting Mobs 4,- as y increases. Figure 102. Plotting Mops 4,- as z increases.
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Figure 103. Plotting Mobs.,sp as p increases. Figure 104. Plotting Mobs /sp,- as z increases.

=

Figure 105. Plotting Mobs. s, as [ increases. Figure 106. Plotting Mobs.sq,y as y increases.

Figure 107. Observed relative area My, as a function of x for y = 0 m.
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Chapter 11

Mapping to a Flat Display Screen

Traditional computer screens, television screens,
movie projector screens, mobile device display
screens, paintings, drawings, photographic prints,
and printed posters all involve presenting a two-
dimensional image on a flaz display surface that is
supposed to give the same visual experience as
looking at a physically present three-dimensional
object or scene. However, the human retina is a
spherical imaging surface. Also, the eye is a small,
point-like observer that sees in terms of spherical
coordinate angles. Therefore, what is seen on the
spherical image capture surface must be some-
how mapped to a flat display screen.

There are several approaches for doing this
mapping. None of these approaches are exactly
correct because there is simply no way to map a
spherical image capture surface to a flat display
screen without distortions. This means that three-
dimensional objects displayed on a flat screen will
never exactly match what is seen by the human
eye when looking at the same objects in the real
world. To be clear, this fact has nothing to do
with humans using two eyes in unison for vision.
Even when just using one eye, three-dimensional
objects that are displayed on a flat screen will
never exactly match what the human eye sees
when viewing the same objects in the physically
real world. (Note that the use of a standard flat
display screen also has the problem of presenting
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the same image to both eyes, thereby failing to
reproduce the parallax effect; but that is a differ-
ent defect from what we are discussing here.)

For there to be no distortions, the computer
display screen or projector screen would have to
be spherical, with the observer’s eye located at the
exact center of this spherical screen, and with
objects in the scene shown at the correct spherical
coordinates.

Most computer screens and projector screens
are flat due to price and complexity issues. How-
ever, the screens in Omni Theaters, IMAX Dome
theaters, MSG Spheres, planetariums, and dome
flight simulators use spherically shaped projector
screens in order to more accurately and immer-
sively present the three-dimensional world.

Even though displaying the three-dimensional
physical world on a flat screen introduces distor-
tions and field-of-view limitations, when done
cleverly, the distortions can be minimized enough
that images can be convincingly experienced as
three-dimensional.

When analyzing the mathematics of mapping
an image from a spherical image capture surface
to a flat display screen, this mapping process is
called projection. However, this word is used in a
general sense and does not necessarily imply a
rectilinear projection or an isometric projection.

A spherical surface centered on the observer
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and a flat surface situated in front of the observer
and perpendicular to the viewing direction both
have azimuthal symmetry and therefore have the
same azimuthal angle ¢. This means that all that
needs to be mapped is the polar angle  to a radial
distance d of a point on the flat display screen
from the center of the display screen.

In practice, a flat display screen cannot be
infinitely large. This means that objects located
near § = 90° must either be mapped to a small
enough radius that they fit on the display screen
or be left outside the field of view. In the latter
case, this means that objects in the real world
which humans can see in their peripheral vision
are not displayed at all on the display screen.

Projecting all of the hemispherical image cap-
ture surface onto a finite-sized, flat display screen
preserves all of the information, but it also intro-
duces the most distortion, so that the image may
feel less real.

In practice, after each projection operation, a
scale factor is applied to the resulting flat image
in order to display it on a particular screen at a
particular size according to the wishes of the user.
This is commonly called the image zoom level.
This scaling does not change the appearance of
the image on the flat display screen other than its
overall size. The application of a scaling factor
will therefore be ignored here.

To simplify the equations, we will continue to
assume that the image capture sphere has a radius
of one meter: a = 1.

11.1 Rectilinear Projection

The rectilinear projection, which is also called the
“central perspective projection” or the “standard
projection,” introduces the least amount of dis-
tortion. This means that the objects and scenes
that are displayed on the flat display screen feel
the most real when this projection is used. For
this reason, the rectilinear projection is the most
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common projection used in movies, television,
photography, drawing, and painting. The rectili-
near projection is so commonly used that some
professionals working in these fields do not even
know that other projections exist.

Even though using the rectilinear projection
produces the least distortion, the tradeoff is that
a large portion of the hemispherical, real-world
field of view ends up off the screen. In other
words, only a small central section of the image
capture hemisphere fits on the display screen. As
a result, visual information is lost and the peri-
pheral portions of human vision are completely
excluded, making the vision experience feel less
immersive.

The larger the display screen, the smaller the
amount of peripheral vision that is excluded, and
the more immersive the experience feels. This is
one of the reasons that movie theaters use large
screens and that homeowners tend to buy the
biggest television screen that they can afford. As
mentioned previously, the only way to display the
entire image capture hemisphere without distor-
tion is by using a spherical display screen such as
found in dome theaters.

The loss of the peripheral image information
when using a rectilinear projection is not as signi-
ficant as it sounds. Keep in mind that the great
majority of photoreceptive cone cells in humans
are situated in the central region of vision.

With that said, sometimes retaining peripheral
visual information is more important than lack of
distortion. In such cases, some other projection
must be used. For instance, the rectilinear pro-
jection is typically not used for panoramic photo-
graphy or for all-sky scientific photography.

Also, the rectilinear projection fails to properly
include lateral perspective effects. In other words,
any object that moves directly away from the
viewing axis (i.e. in the p direction) should appear
to get smaller as it moves, because it is moving
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farther away from the observer. However, in the
rectilinear projection, an object that is moving
directly away from the viewing axis does not
change size at all, in terms of its actual size on the
display screen, no matter how far it goes. This
drawback is not as bad as it sounds because the
object typically moves off the screen, and thus
out of view, before it travels enough distance that
the lack of lateral perspective becomes obvious.

The rectilinear projection consists of extend-
ing the radial line that goes from the observer
through the object on the image capture sphere
until it meets the flat display screen, as is shown
in Fig. 108.

In Figs. 108-113, the solid black circle or semi-
circle represents the hemispherical image capture
surface, the solid black horizontal line represents
the flat display screen, the image shown in the
long grey box represents what you would actually
see on the display screen, the solid grey arrows
show the projection directions, and the dashed
lines are drawn to represent various polar angles.

As shown in Fig. 108, we end up with a right
triangle with @ as the adjacent side and d as the
opposite side. Applying trigonometry, we find:
d/a = tan@. Setting a = 1, as we have done
previously, this becomes:

d =tanf (109)

Fig. 108 makes it clear that the entire image cap-
ture hemisphere cannot fit on a finite flat display

screen when the rectilinear projection is used. An
infinitely large display screen would be needed to
contain the entire image capture hemisphere.

Because of the ability to scale a flat image (i.e.
zoom in and out), one can choose to use a very
large mathematical flat display screen to capture a
large amount of the hemispherical image capture
surface and then scale the result down in order to
fit it onto the physical display screen. However,
the drawback of this approach is that the objects
in the scene become very small in the image.

By combining Eq. 109 with Eqs. 9, 11, and 20,
we can derive the equations that can tell us how
to take the object’s physical location (x, y, z) or (p,
¢, z) ot (a, y, [) and compute the object’s location
(d, p) on the flat display screen, leading to Eqgs.
110-112 (remembering that the ¢ coordinate of
the flat display screen image is the same as the ¢
coordinate of the spherical image capture surface
and therefore no additional equations are needed

for ¢):
d= —”22”2 (110)
P
d="2 (111)
d = yPZsin?a+y? (112)
lcosa

As Eq. 111 shows, this projection leads to the fact
that the object’s radial distance d from the central
horizon point on the flat display screen, and the
object’s radial distance p from the viewing axis in

Figure 108. Rectilinear projection.
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the original physical reality are linearly propor-
tional to each other with the coefficient of pro-
portionality being (1/z). This means that lines that
were straight in the physical reality will end up
straight on the flat display screen.

For all objects in the original physical reality
that were in the same x-y plane (i.e. at the same z
value), they were projected onto the spherical
image capture surface because of the nature of
human vision and then projected back to a flat
display screen along the same rays when using the
rectilinear projection. This means that if the flat
display screen were infinitely large, if the image
scale factor was chosen so that the physical size
of objects on the display screen exactly equaled
the physical size of the objects in the original
physical reality, if the image perfectly recreated
the correct colors and brightness, and if the
person viewing the display screen were standing
at the exact location relative to the scene where
the camera had been, then there would be zero
distortion. This means that the image on the flat
display screen would look just like the original
physical reality (if viewing the image with only
one eye and if ignoring depth from defocusing
and if the person continuously gazed directly at

the central horizon point on the screen).

But in most real-world situations, flat display
screens are nowhere near infinitely large (they can
range in size from a few centimeters on a hand-
held mobile device to a few dozen meters in
movie theatres), the viewer does not typically gaze
continuously at exactly the center of the display
screen, the viewer is typically much closer than
the camera had been, and the image scale factor
is rarely chosen to make the physical size of the
objects on the display screen equal the size of the
same objects in the original physical reality. For
these reasons, in addition to the lack of peripheral
vision information, using the rectilinear project-
tion in practice always involves some amount of
distortion. Despite this fact, the human brain is
tremendously forgiving so that even when the
presented image has large amounts of distortion,
the brain can still visually experience depth. As a
result, rectilinear-projected images on a flat movie
theatre screen can feel incredibly real.

11.2 Stereographic Projection

Although the rectilinear projection typically pro-
duces the least distortion, it suffers from the flaw
of excluding peripheral-vision information. We

Figure 109. Stereographic projection.
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can instead use a projection method that is nearly
identical to the rectilinear projection but manages
to fit the entire image capture hemisphere on the
finite flat display screen. One common way of
doing this is by taking Eq. 109 and replacing 6
with 6/2, leading to Eq. 113 (note that an overall
factor of two is also included in order to give Eq.
113 the same sense of scale as Eq. 109).

This approach is called the stereographic pro-
jection. This approach graphically means that we
are still projecting a point on the imaging sphere
outward along a straight ray, but the ray now
originates from the bottom of the image capture
sphere instead of from its center where the obser-
ver sits, as shown in Fig. 109.

The stereographic projection preserves angles.
This means that a particular angle between two
physical lines in the real world, when seen on the
flat display screen, will be the same angle no
matter where it is located on the display screen
(assuming that the distance of this angular object
from the observer is constant and it is always
viewed broadside).

Looking at Fig. 109, we see that a right triangle
is formed with d as its opposite side, 2a as its
adjacent side, and /2 as its angle. This angle can
be proven to have a value of 6/2 by recognizing
that this right triangle contains the smaller right
triangle with the angle 6 and an isosceles triangle,
so that the two acute angles of the isosceles tri-
angle must be equal to each other and also must

add up to 6, which is only possible if each is 6/2.
Applying trigonometry to the right triangle that
has the angle 6/2 in Fig. 109, we end up with the
equation tan(0/2) = d/(2a). Setting a = 1, we
finally find what we already expected:

d = 2tan? (113)

By combining Eq. 113 with Eqgs. 9, 11, and 20,
and using various trigonometric identities, we can
derive the equations that can tell us how to take
the object’s physical location (x, y, z) or (p, ¢, z) or
(a, ¥, ) and compute the object’s location (d, ¢)
on the flat display screen, leading to:

Vx2+y24z2-7z
Vx2+y?

(o

p

d=2 (114)

d=2 (115)

12+y2—lcosa

d=2V—
Jy2+12sin2 a

(116)

11.3 Equidistant Projection

The equidistant projection simply maps the polar
angle to the radial location on the display screen
by setting them equal to each other:

d=20

This is a simple linear relationship. As shown in

(117)

Fig. 110, this means that a series of objects that
are arranged on the image capture sphere with
equal spacing will appear on the flat display screen

Figure 110. Equidistant projection.
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to still have equal spacing. This can be thought of
as taking the semicircle and unrolling it until it
becomes a flat line.

As usual, the thick black semicircle in Fig. 110
represents the hemispherical image capture sur-
face, the thick black horizontal line represents the
flat display screen and the grey box represents
what would actually appear on the display screen.

We will again assume that the chosen image
scaling factor is such that the entire image capture
hemisphere ends up on the display screen.

This equidistant projection preserves angular
distance (A#) relationships. This means that no
matter where an object is located in the real field
of view and in the corresponding image on the
flat display screen, the object will always extend
across the same angular distance A6, (if the object
holds its distance » constant and continues to be
viewed from broadside), and therefore it will
always have the same observed length on the flat
display screen if the equidistant projection is used.

Or, in other words, if the distance between
two points in physical reality is held constant and
the two points are the same distance 7 from the
observer, and both points have the same azimu-
thal angle, then their observed separation distance
on the flat display screen will be the same no
matter where they are located, if the equidistant
projection is used.

By combining Eq. 117 with Eqgs. 9, 11, and 20,
we can derive the equations that can tell us how

to take the object’s true physical location (x, y, z)
ot (p, ¢, z) or (a, ¥, [) and compute the object’s
location (d, ¢) on the flat display screen:

d = tan™? (—V"Z;yz> (118)
d = tan™ (£) (119)
d = cos™? (%) (120)

11.4 Equisolid Angle Projection

The equisolid angle projection preserves object
area relations. This means that a patch of area in
physical reality can be moved anywhere (as long
as it maintains a constant distance from the
observer and is always viewed broadside) and it
will always have the same area on the display
screen when this projection is used. This means
that we set d equal to the straight-line distance
between the object’s location on the hemispheri-
cal image capture surface and the 8 = 0 point on
the hemispherical image capture surface, as is
shown in Fig. 111.

An isosceles triangle is formed by the line
connecting the object’s location on the hemi-
spherical image capture surface and the 8 = 0
point, and the two sides each with length a. If you
cut this isosceles triangle in half along its line of
symmetry, you end up with a right triangle with a
hypotenuse of length a, an opposite side of length
d/2, and an angle of 0/2. Applying trigonometry

Figure 111. Equisolid angle projection.
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to this right triangle, we end up with sin(6/2) =
(d/2)/a. Setting a = 1, we end up with:

d = 2sin? (121)

Combining Eq. 121 with Egs. 9, 11, and 20, we
can derive the equations that tell us how to take
the object’s physical location (x, y, z) or (p, ¢, z) or
(a, ¥, ) and compute the object’s location (d, ¢)
on the flat display screen:

A
d‘ﬁ,/l_m
zZ
d—ﬁ/l——m

lcosa
d—\/i 1_\/T7

(122)
(123)
(124)

11.5 Orthographic Projection

The orthographic projection involves projecting
every object on the hemispherical image capture
surface directly in the z direction until ends up on
the flat display screen, as is shown in Fig. 112.

Figure 112. Orthographic projection.

The orthographic projection is similar to the
stereographic projection that is shown in Fig. 109,
except that instead of the projection rays ema-
nating from the bottom of the spherical image
capture surface, they effectively emanate from the
point (x, , z) = (0, 0, -0). Looking at Fig. 112 and
applying trigonometry, we find: d/a =sin 6. Setting
a = 1 in this equation, it becomes:
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d =sinf (125)

The orthographic projection leads to significant
distortion at the higher polar angles (i.e. at the
edge of the image on the display screen).

By combining Eq. 125 with Eqgs. 9, 11, and 20,
and using various trigonometry identities, we can
derive the equations that can tell us how to take
the object’s physical location (x, y, z) or (p, ¢, z) or
(a, ¥, ) and compute the object’s location (d, ¢)
on the flat display screen:

d= \/ﬁ (126)
p

d="r (127)

__ I?sin?2 a+y?
d= W (128)

11.6 Slight Pincushion Projection

For the purpose of illustrating the effects that are
present, I introduce here an additional projection
method which is not standard and is almost never
used, shown in Fig. 113.

Figure 113. Slight pincushion projection.

This projection will demonstrate the effects of
pincushion distortion. In terms of the language
used by photographers, the rectilinear projection
causes almost no distortion, whereas the stereo-
graphic projection, the equidistant projection, the
equisolid angle projection, and the orthographic
projection cause barrel distortion (meaning that
the center of the image bulges out like a barrel),
and this projection causes pincushion distortion.



Chapter 11. Mapping to a Flat Display Screen

Because none of the other projections cause
pincushion distortion, this final projection is
introduced to illustrate the associated effects. The
slight pincushion projection is defined by Eq.
129. Note that this definition does not corre-
spond to any particular geometric principle.

d = —tan(1.26) (129)

By combining Eq. 129 with Eqgs. 9, 11, and 20,
and by using various trigonometry identities, we
derive the equations that can tell us how to take
the object’s physical location (x, y, z) or (p, @, z) or
(a, ¥, ) and compute the object’s location (d, ¢)

display screen:
d =L tan (1.2 tan~? (_sz;yz)) (130)
_ 1 -1(P
d=—tan(12tan*(2)) (51
_ 1 —1( lcosa
d = —tan (1.2 cos (W» (132)

11.7 Plotting the Flat Display Screen
Projection Equations

To get any idea for what the projection equations
mean, we can plot d as a function of 6 for the
various projection methods, as shown in Fig. 114.

Figure 114. Projection methods for mapping to a flat display scteen, d vs. 0.
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Figure 115. Projection methods for mapping to a flat display screen, d vs. tan 6.
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Specifically, Fig. 114 shows the plots of Eqs. 109,
113, 117, 121, 125, and 129. Note that Fig. 114
shows that all of the projection methods give
nearly identical results for polar angles that are
less than about 15°. This means that in the central
region of vision and in the near peripheral region
of vision, the image shown on the flat display
screen looks approximately the same no matter
which of these projection methods is used.
Considering that the rectilinear projection is
the projection with the least distortion and is the
method that is most commonly used, let us, for
comparison purposes, plot d instead as a function

11.8 Using Rectangular Display Screen
Coordinates

Instead of using the polar display screen coordi-
nates (d, ), we can use rectangular display screen
coordinates (Xscreen, Vsereen), as 1s usually done in
practice. The equations linking these coordinates
are the usual polar coordinate equations which
can be found using trigonometry:

Xscreen = A COS@ and  Yscreen = A SINQ

Applying these two equations to the projection
equations for rectilinear projection (Egs. 110 to
112), stereographic projection (Eqgs. 114 to 116),

Table 4. Equations specifying the value of ¢ for the different projection
methods, as a function of the object’s real-wortld coordinates (x, y, z). The

equations in this table are labeled: (133), (134), (135), (136), (137), (138).

Rectilinear 1
z
[x24v2+z2—
Stereographic 2 xXe+yc+ze-z
x2+y2
212
Equidistant ! tan-t (XY
JxZ+y? z
Equisolid Angle 2 1 — z
x2+y? Vx2+y?+z2
: 1
Orthographic = ——
212
Slight Pincushion ' i (1_2 N <\/x +y ))
1.2\/x%+y? z

of tan @ for the various projection methods. The
results are shown in Fig. 115.

When plotted in this way, Fig. 115 makes it
clear that the pincushion projection, the rectili-
near projection, and the set of all other project-
tions are in three distinct categories. For these
reasons, the rectilinear projection is considered
the standard projection.

equidistant projection (Eqs. 118 to 129), equisolid
angle projection (Egs. 122 to 124), orthographic
projection (Eqs. 126 to 128), and slight pincush-
ion projection (Eqs. 130 to 132); along with the
original equations for ¢; we can find the equations
that determine the screen location (Xscreen, Vscreen)
for a particular object location in the physical
wortld in terms of the various object coordinate

75



Chapter 11. Mapping to a Flat Display Screen

Table 5. Equations specifying the value of ¢ for
the different projection methods, as a function
of the object’s real-world coordinates (p, ¢, z).

The equations in this table are labeled: (139),
(140), (141), (142), (143), (144).

Table 6. Equations specifying the value of ¢ for
the different projection methods, as a function
of the object’s real-wotld coordinates (7, 0, @).

The equations in this table are labeled: (145),
(146), (147), (148), (149), (150).

Rectilinear £ Rectilinear tan 0
z
[p24+72—
Stereographic 2 ypTHzToz Stereographic 2 tan —
p 2
Equidistant tan~! (E) Equidistant [a]
z
Equisolid Angle V2 [1-— — Equisolid Angle 2 sin g
/ p 2 +z 2 2
Orth hi £ Orth hi in 8
rthographic W rthographic Sin
9 Q Q 1 —-1(P q q . 1
Slight Pincushion —tan (1_2 tan™" (= ) Slight Pincushion —tan(1.20)
1.2 z 1.2

systems. When presented in condensed form by
applying various trigonometric identities, we find
the results that are as described in the following
sections.

11.9 Using Rectangular Coordinates for the
Object Location

For an object whose physical location in the real
world is given in regular rectangular coordinates
as (x, y, z), its location on the display screen is
given by Eq. 151, where the overall multiplicative
coefficient ¢ depends on the projection method
and is given in Table 4.

(Xscreens Yscreen) = (cx, €y) (151)
11.10 Using Cylindrical Coordinates About
the z Axis for the Object Location

For an object whose physical location in the real
world is given in cylindrical coordinates about the
z axis as (p, ¢, 2), its location on the display screen
is given by Eq. 152, where the overall multipli-
cative coefficient ¢ depends on the projection
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method and is given in Table 5. Note that the
equations for ¢ in Table 5 are the same equations
as in Table 6, but expressed as a function of p/z.
Because p/z = tan 6, this means that plotting the
equations in Table 5 as a function of p/z is
equivalent to plotting the equations in Table 6 as
a function of tan 6, which has already been done.
Specifically, Fig. 115 shows the results when you
plot the equations in Table 5 as a function of p

when z = 1.

(xscreenf yscreen) = (C cos ¢, csin (P) (152)

11.11 Using Spherical Coordinates for the
Object Location

For an object whose physical location in the real
world is given in spherical coordinates as (r, 6, @),
its location on the display screen is given by Eq.
159, where the overall multiplicative coefficient ¢
depends on the projection method and is given in
Table 6. Note that the equations for ¢ in this case
are the projection equations in standard form
(Egs. 109,113,117, 121, 125, & 129). This means
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Table 7. Equations specifying the value of ¢ for the different projection

methods, as a function of the object’s real-wotld coordinates (a, y, ).
These equations are labeled: (153), (154), (155), (1506), (157), (158).

s 1
Rectilinear
lcosa
BB
Stereographic [2+y2—lcosa
y2+12sin? a
2172 qin2
Equidistant 1 tan~1 Jy2+i2sinZa
y2+12sin? a lcosa
Equisolid Angle 2 _ lcosa
y2+12sin? a [12+y2
Orth hi 1
rthographic
s Nz
. . 1 WA oo
Slight Pincushion —————tan (1_2 tan 1( y“+1°sin a))
1.2y/y2+1%sin?a lcosa

that the plot of the equations in Table 06 is already
shown in Fig. 114.

(xscreenr yscreen) = (C cos @, csin (,0) (159)

11.12 Using Cylindrical Coordinates About y

Axis for the Object Location

For an object whose physical location in the real
world is given in cylindrical coordinates about the
v axis as (a, y, [), its location on the display screen
is given by Eq. 160, where the overall multiplica-
tive coefficient ¢ depends on the projection meth-
od and is given in Table 7.

(xscreenr yscreen) = (Cl sina, Cy) (160)

11.13 Plotting Various Surfaces Using All
Projection Methods

To illustrate the meaning of the projection equa-
tions applied to the human monocular geometry
(Egs. 133-160), we can plot various physical sur-
faces that exist in three-dimensional space and are
extended in two of the coordinate dimensions.
All of the remaining plots in this chapter were
generated using only Eqs. 133-160 without the
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use of any 3D display software packages or pre-
built rendering engines. This means that the plots
below are mathematically accurate and contain no
approximations, simplifications, models, or hard-
ware-specific rendering parameters.

In each of the plots below, all of the coor-
dinates are given in meters. Furthermore, neigh-
boring grid lines running in the same direction are
exactly one meter apart in the original, physical,
three-dimensional space (except where noted).
Therefore, the intersection of any two sets of
neighboring grid lines defines a square that has an
area of exactly one square meter.

All of the projection plots were created using
the same screen scale. This means that, in the
central region of vision (where all of the project-
tion methods produce approximately the same
screen image), every projection method produces
the same size squares. In other words, because all
of the plots use the same screen scale, if you
cropped every image down to a few dozen pixels
in the middle of the image, every image would
contain the same sized squares, regardless of the
projection method.
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The side effect of using a constant screen scale
is that, aside from the rectilinear and slight pin-
cushion projections, each projection method has
produced a differently sized overall image. To
make clear that the pixels that are outside of the
outermost circle are not actually part of the image,
I have made these pixels grey.

Fig. 116 shows a flat x-y plane that is sitting at
z = 2 m, as observed by the human monocular
vision system and then projected to a flat display
screen using the various projection methods. In
this figure, the grid lines are running in the x and
v directions and are all spaced one meter apart.

This plane physically represents an infinitely
large, flat wall that the observer is staring directly
at. Fig. 117 shows the same wall, but now at a
distant of z = 5 m. Fig. 118 shows the same wall,
but now at z = 10 m. These figures are plotting
Egs. 133-138 and Eq. 151 for the collection of
(x, », z) points that make up the grid lines.

Figs. 116-118 make clear that the rectilinear
projection does not propetly preserve lateral size
perspective effects. The squares near the edge of
each image are farther away from the observer
than the squares in central vision and therefore
should appear smaller, and yet they appear the
same size in the rectilinear projection. However,
Figs. 116-118 show that the rectilinear projection
does indeed preserve straight lines whereas the
other projections do not. For this reason, these
other projections are often called curvilinear pro-
jections.

Because Figs. 116-118 show the same physical
plane, but observed at different z distances from
the observer, these figures taken together show
the forward distance perspective effect, where the
1-square-meter grid squares appear smaller the
farther away they are from the observer. Specifi-
cally, close inspection of Fig. 118 compared to
Fig. 117 reveals that each grid square appears one
fourth as large in area atz = 10 mas atz = 5 m.
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This demonstrates the area perspective effect
in the forward direction, where the observed area
diminishes with the distance according to (1/2°),
which is a special case of (1/r%) when x =y = 0.
Note that all of the projections preserve this area
perspective effect in the forward direction.

Fig. 119 shows a flat x-z plane sitting at y = -2
m, as observed by the human monocular vision
system and projected onto a flat display screen
using the various projection methods. In this
figure, the grid lines are running in the x and z
directions and are all spaced one meter apart. This
plane physically represents an infinitely large, flat
ground plane. Fig. 120 shows the same ground
plane, but now at y = -5 m. These figures are
plotting Eqs. 133-138 and Eq. 151 for the collec-
tion of (x, y, z) points that make up the grid lines.

Figs. 119 and 120 demonstrate the horizon
perspective effect. All of the grid lines running in
the z direction are parallel to each other, but
because they extend away from the observer in
the z direction, they appear to all be converging at
the central horizon point at @ = 0. Also, this effect
makes the overall ground plane appear to end at
the horizon line (i.e. where the sky meets the
ground). Note that all of the projections preserve
the horizon perspective effect. As before, Figs.
119 and 120 demonstrate that the rectilinear pro-
jection preserves straight lines.

Fig. 121 shows a flat x-z plane that is sitting at
» = -5 m, the same as in Fig. 120, but now the grid
lines are running in directions that are rotated 45°
relative to the x and z directions. Because none of
the grid lines in Fig. 121 are running in the z direc-
tion, none of the lines converge at the central
horizon point at § = 0. However, because each
set of gridlines consists of lines that are parallel in
the real world, each set converges at a perspective
point on the horizon line that is not at the center.
Because there are two different sets of parallel
lines, there are two different horizon points.
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Artists call this arrangement “two-point per-
spective.” In practice, two-point perspective is
useful in drawing city scenes because buildings in
real life tend to be laid out along, and aligned with,
a rectangular ground plane grid that is usually
rotated relative to the observer.

Fig. 122 shows two y-z planes, one atx = -2 m
and the other at x = 2 m, as observed by the
human monocular vision system and projected
onto a flat display screen using the various projec-
tion methods. In this figure, the grid lines are
running in the y and z directions and are all spaced
one meter apart. These planes physically repre-
sent two parallel, infinitely large walls. Fig. 123
shows the same setup but now with the planes at
x =-5m and x = 5 m. These figures are plotting
Egs. 133-138 and Eq. 151 for the collection of
(x, y, z) points that make up the grid lines. These
figures demonstrate that the central horizon point
as a vanishing point applies to all sets of parallel
lines extending in the z direction, and not just to
such lines in a ground plane.

Fig. 124 shows a flat p-s, plane at z = 5 m, as
observed by the human monocular vision system
and projected onto a flat display screen using the
various projection methods. In this figure, the
grid lines are running in the p and s, directions.
The grid lines running in the s, direction are all
one meter apart. The grid lines running in the p
direction are all 15° apart. This plane physically
represents an infinitely large dart board. Note that
a p-s, plane is identical to an x-y plane except for
the direction of the grid lines. Fig. 125 shows the
same p-s, plane, but now at a distance of z = 10
m. These figures are plotting Eqgs. 139-144 and
Eq. 152. for the collection of (p, ¢, z) points that
make up the grid lines.

Fig. 126 shows the cylindrical s,z surface at
p = 5 m, as observed by the human monocular
vision system and projected onto a flat display
screen using the various projection methods. In
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this figure, the grid lines are running in the s, and
z directions. All of the grid lines are one meter
apart. This surface physically represents an infi-
nitely long circular tunnel extending away from
the viewer in the z direction. This figure is plot-
ting Eqs. 139-144 and Eq. 152 for the collection
of (p, ¢, z) points that make up the grid lines.

Fig. 127 shows the spherical sp-s, surface sit-
ting at » = 18/ = 5.7297795 m, as observed by
the human monocular vision system and project-
ed onto a flat display screen using the various
projection methods. The observer is at the center
of this sphere. In this figure, the grid lines are
running in the sy and s, directions. All of the grid
lines running in the sy direction are spaced 15°
apart. All of the grid lines running in the s, direc-
tion are spaced one meter apart. The radius of this
sphere was chosen to ensure this. This surface
physically represents a spherical room. This figure
is plotting Egs. 145-150 and Eq. 159 for the
collection of (r, 6, ) points that make up the grid
lines.

Fig. 128 shows the cylindrical s.-y surface at
[ = 5 m, as observed by the human monocular
vision system and projected onto a flat display
screen using the various projection methods. In
this figure, the grid lines are running in the s, and
y directions. All of the grid lines are one meter
apart. This surface physically represents standing
on a platform in the middle of an infinitely tall
grain silo. This figure is plotting Eqs. 153-158 and
Eq. 160 for the collection of (a, y, [) points that
make up the grid lines.

Fig. 129 shows the flat s,-/ plane at y = -5 m,
as observed by the human monocular vision sys-
tem and projected onto a flat display screen using
the various projection methods. In this figure, the
grid lines are running in the s, and / directions.
The grid lines running in the s, direction are
spaced one meter apart. The grid lines running in
the / direction are spaced 15° apart. This surface
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physically represents a flat ground plane that has
been marked up like a dart board. This figure is
plotting Egs. 153-158 and Eq. 160 for the collec-
tion of (a, y, /) points that make up the grid lines.

Figs. 130-138 show more complex structures
that were created by combining several of the sur-
faces already mentioned. Fig. 130 shows a canyon
formed by the flat y-z planes at x = -5 m and at
x = 5 m, and the flat x-z plane at y = -5 m, with
grid lines running in the x, y, and z directions, as
appropriate, and spaced one meter apart.

Fig. 131 shows a square tunnel formed by the
flat x-z planes at y = -2 m and y = 2 m and the flat
y-z planes at x = -2 m and x = 2 m, with grid lines
spaced one meter apart.

Fig. 132 shows a larger square tunnel formed
by the flat x-z planes aty = -5 m and y = 5 m and
the flat y-z planes atx = -5 m and x = 5 m.

Fig. 133 shows an arched tunnel formed by the
x-z plane at y = -5 m, the y-z planes at x = -5 m
and x = 5 m, and the s,-z surface at p = 5 m.

Fig. 134 shows a cube-shaped room formed
by the x-z planes aty = -5 m and y = 5 m, the y-z
planes at x = -5 m and x = 5 m, and the x-y planes
atz = 10 m and z = 0 m. Note that this room is a
10 m X 10 m X 10 m room with the observer
located on the back wall at the middle of the wall.

Fig. 135 shows the same room shown in Fig.
134 but with markings added to aid in visually
locating the parts of the walls. The floor and
ceiling have been colored green with a concentric
square pattern and the walls have been colored
blue with the same type of pattern. Fig. 135 makes
clear that the slight pincushion projection and the
rectilinear projection are not able to show the
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whole room, while the other projections are. In
the rectilinear projection version of the image, the
back two meters of the walls, floor, and ceiling are
not visible. In the slight pincushion projection
version of the image, the back three meters of the
walls, floor, and ceiling are not visible.

Fig. 136 shows an arched room formed by the
surfacesaty = -5m,y=5m,x = -5m,x = 5m,
p =5m,and z = 10 m. This arched room is the
same as the room shown in Fig. 134, but with an
arch shape added to the upper half of the room.

Fig. 137 shows a cylindrical room formed by
the x-z planes at y = -2 m and y = 2 m, and the
sq-y surface at/ = 5 m.

Fig. 138 shows a sealed tunnel formed by the
sp-z surface at p = 5 m and the p-s, surface atz =
10 m.

In each of these figures (Figs. 116-138), the
image that was generated by the rectilinear projec-
tion seems to feel the most real and natural.
However, this arises partly from the fact that the
images generated by the curvilinear projections
(except the slight pincushion projection) end up
contained within a circular image boundary, but
we are used to viewing images in everyday life that
are contained within rectangular boundaries.

To make the images generated by the curvili-
near projections feel more real and natural, we
can crop these images down to square images, at
the cost of throwing away part of the image infor-
mation. To demonstrate this, most of the images
already shown have been cropped down to the
same size. The results are shown in Figs 139-141
(to conserve space, only the rectilinear and stereo-
graphic projections are shown).



Chapter 11. Mapping to a Flat Display Screen

Slight Pincushion Projection Rectilinear Projection

Stereographic Projection Equidistant Projection

Equisolid Angle Projection Orthographic Projection

Figure 116. A flat x-y plane at z = 2 m, with grid lines running in the x and y directions, spaced one meter apart.
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Slight Pincushion Projection Rectilinear Projection
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Stereographic Projection Equidistant Projection

Equisolid Angle Projection Orthographic Projection

Figure 117. A flat x-y plane at z = 5 m, with grid lines running in the x and y directions, spaced one meter apart.
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Slight Pincushion Projection Rectilinear Projection
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Stereographic Projection Equidistant Projection
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Equisolid Angle Projection Orthographic Projection

Figure 118. A flat x-y plane at z = 10 m, with grid lines running in the x and y directions, spaced one meter apart.
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Slight Pincushion Projection Rectilinear Projection

Stereographic Projection Equidistant Projection

Equisolid Angle Projection Orthographic Projection

Figure 119. A flat x-z plane at y = -2 m, with grid lines running in the x and z directions, spaced one meter apart.
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Equisolid Angle Projection Orthographic Projection

Figure 120. A flat x-z plane at y = -5 m, with grid lines running in the x and z directions, spaced one meter apart.
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Slight Pincushion Projection Rectilinear Projection

Stereographic Projection Equidistant Projection

Equisolid Angle Projection Orthographic Projection

Figure 121. A flat x-z plane at y = -5 m, with grid lines running 45° relative to the x and z axes, spaced one meter apatt.
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Equisolid Angle Projection Orthographic Projection

Figure 122. The y-z planes at x = -2 m and x = 2 m, with grid lines running in the y and z directions, spaced a meter apart.
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Slight Pincushion Projection Rectilinear Projection

Stereographic Projection Equidistant Projection

Equisolid Angle Projection Orthographic Projection

Figure 123. The y-z planes at x = -5 m and x = 5 m, with grid lines running in the y and z directions, spaced a meter apart.
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Slight Pincushion Projection Rectilinear Projection

Equidistant Projection
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Equisolid Angle Projection Orthographic Projection

Figure 124. A flat p-s,, plane at z = 5 m, with grid lines running in the p and s, directions, s, lines spaced one meter apart.
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Slight Pincushion Projection Rectilinear Projection

Stereographic Projection Equidistant Projection
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Equisolid Angle Projection Orthographic Projection

Figure 125. A flat p-s,, plane at z = 10 m, with grid lines running in the p and s, directions, s, lines spaced one meter apart.
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Equisolid Angle Projection Orthographic Projection

Figure 126. An s,z tunnel surface at p = 5 m, with grid lines running in the s, and z directions, spaced one meter apart.
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Slight Pincushion Projection Rectilinear Projection

Equisolid Angle Projection Orthographic Projection

Figure 127. A spherical s4-s, surface with grid lines running in the s¢ and s, directions, S, lines spaced one meter apart.
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Figure 128. A cylindrical s,y surface at [ = 5 m, with gtid lines running in the s, and y directions, spaced one meter apatt.
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Rectilinear Projection

Equidistant Projection
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Slight Pincushion Projection

Stereographic Projection

Orthographic Projection

Equisolid Angle Projection

5 m, with gtid lines running in the s, and [ directions, s, lines spaced one meter apatt.

Figure 129. A flat s,-I plane at y
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Orthographic Projection

Equisolid Angle Projection

=-5m.

5 mand x = 5 m, and the flat x-z plane at y

Figure 130. A canyon formed by the flat y-z planes at x
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Slight Pincushion Projection Rectilinear Projection
Stereographic Projection Equidistant Projection

Equisolid Angle Projection Orthographic Projection

Figure 131. A square tunnel formed by the flat x-z planes at ¥ = -2 m and y = 2 and the flat y-z planes at x = -2 and x = 2.
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Slight Pincushion Projection

Stereographic Projection Equidistant Projection

Equisolid Angle Projection Orthographic Projection

Figure 132. A square tunnel formed by the x-z planes at y = -5 m and y = 5 m and the y-z planes atx = -5m and x = 5 m.
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Slight Pincushion Projection

Stereographic Projection Equidistant Projection

Equisolid Angle Projection Orthographic Projection

Figure 133. An arched tunnel formed by the planes aty = -5 m, x = -5 m, and x = 5 m, and the surface at p = 5 m.
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Figure 134. A room formed by the planesaty =-5m,y =5m,x =-5m,x =5m,and z = 10 m.
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Figure 135. The room shown in Fig. 132 with markings added to aid in visually locating the parts of the walls.
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Figure 136. An arched room formed by the surfacesaty =-5m,y =5m,x =-5m,x =5m, p = 5m,and z = 10 m.

101



Chapter 11. Mapping to a Flat Display Screen

Slight Pincushion Projection Rectilinear Projection
]
|
Stereographic Projection Equidistant Projection
[] 1
[ 1l
1 []]
ARl /]
Equisolid Angle Projection Orthographic Projection

Figure 137. A cylindrical room formed by the x-z planes at y = -2 m and y = 2 m, and the $4-y sutface at / = 5 m.
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Figure 138. A sealed tunnel formed by the §,-z surface at p = 5 m and the p-s, surface at z = 10 m.
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Figure 139. Cropped images for the various scenarios.
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Figure 140. Additional cropped images.
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Figure 141. The last set of cropped images.
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Chapter 12

Human Depth Perception Cues

As established and demonstrated in the previous
chapters, depth information from three-dimen-
sional scenes and objects is partially embedded in
the two-dimensional images that humans visually
experience. This is why humans can experience
the external world as three-dimensional despite
the fact that the human retinas only capture two-
dimensional images. In summary, we have now
established that depth information is preserved
through the following effects:

1. As an object moves away from the observer
in the r direction, its observed length diminishes
according to the equation (1/r).

2. As an object moves away from the observer
in the r direction, its observed area diminishes
according to the equation (1//%). This effect and
the previous effect involve situations when the
object moves forward, away from the observer,
which are the forward size perspective effects.

3. As an object in front of the observer moves
laterally away from the viewing axis, its observed
size and area diminish in complicated ways, which
are the lateral size perspective effects. An object
moving in an odd direction experiences a combi-
nation of the forward size perspective effects and
the lateral size perspective effects.

4. As an object moves away from the observer
in the z direction, it appears to be moving toward
the central horizon point.

107

5. Parallel lines that extend away from the
observer in the z direction appear to all converge
at the central horizon point.

6. An object that moves away from the ob-
server not in the z direction, but rather in some
direction in the x-z ground plane, appears to be
moving toward some point on the horizon line
that is not the central horizon point.

7. Parallel lines that extend away from the ob-
server not in the z direction, but in some direction
in an x-z ground plane, appear to converge at
some point on the horizon line that is not the
central horizon point.

8. As a flat object tilts away from broadside
viewing without changing its distance » from the
observer, its length and area appear to diminish.

9. An object that is moving at a constant speed
will appear to move quickly when it is closer to
the observer and more slowly when it is farther
away from the observer. Similarly, when several
objects are moving at the same physical speed in
the same direction, the closer objects will appear
to be moving at a faster speed.

10. For everyday speeds, a moving object that
is very far away will appear to be motionless.

The human vision system uses these effects in
various ways, along with other effects, in order to
experience depth. The different ways that the
human eyes and brain use these effects are called
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visual depth perception cues. The human mono-
cular depth perception cues are described in the
following sections. Note that some people use the
term “perspective” narrowly so that only some of
the effects below are types of perspective effects,
while others use this term broadly to include all
of the effects below. To avoid confusion, I will
avoid using this term, with the understanding that
all of the effects below are either perspective
effects or are related or work in conjunction with
perspective effects.

12.1 Motion Parallax

If you are moving smoothly as you look out at the
stationary external world, it is equivalent to you
staying motionless while the entire world moves
in a corresponding way. As the whole world
appears to move, objects that are closer to you
will appear to move at a faster speed because of
parallax. Your brain understands that all of the
moving objects in your view have the same true
speed (because it's really just one object—you—
that is moving through space). Therefore, your
brain can determine how far away an object is
from you by how fast it appears to be moving as
the observer moves. Geometrically, this arises
from the same parallax effect that binocular depth
perception uses, but now the different images are
arising from you moving your eyes to different
viewing locations and not from you using two
eyes. This is called motion parallax.

As an example, imagine you are on a moving
train. As you look out the window, closer objects
such as telephone poles appear to move quickly
across your field of view, while distant objects
such as mountains appear to move slowly.

12.2 Kinetic Depth Effect

Physical objects tend to move in common ways
which your brain understands and can thus use to
extract depth information. For instance, consider
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a rigid object that is rotating in place. In the
physical reality, all parts of the object travel along
circular paths around the same rotational axis.
When viewed by a human, all parts appear to be
traveling along elliptical paths around the same
rotational axis (assuming that you are not staring
directly done the rotational axis). This is the
kinetic depth effect.

Furthermore, the apparent width of a part's
elliptical path depends on how far away that part
is from the rotational axis. Your brain can detect
all this and extract depth information. Your brain
can also do this type of thing with other common
types of motion, such as projectile motion, wave
motion, and walking motion.

The kinetic depth effect is different from
motion parallax. While motion parallax involves a
steadily moving observer looking at a motionless
world (and therefore always results in the whole
world seeming to move in the same direction), the
kinetic depth effect instead involves a motionless
observer looking at moving objects. 1f all visible
objects are moving past a fixed observer in the
same direction at the same true speed, then the
kinetic depth effect ends up equivalent to motion
parallax. But for all other types of object motion,
they are not equivalent. There is no way in which
an observer can travel though space while viewing
a motionless scene that will produce a result that
is equivalent to the kinetic depth effect of waving
motion, walking motion, explosive motion, and
so forth.

12.3 Depth from Optical Expansion

When an object is moving steadily toward you, its
apparent size increases in a specific way. The raze
at which it appears to get bigger depends on how
far away it is and how fast it is moving toward
you. When the object is far away, it will appear to
get bigger very slowly. When the object is very
close, it will appear to get bigger quickly. This
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effect is called optical expansion. Your brain can
deduce not only that the object is moving but also
the object's distance. Note that the reverse is also
true: an object moving steadily away from you
appears to get smaller at a rate that is proportional
to its distance.

When a baseball is thrown toward you, your
brain uses optical expansion to keep track of its
distance. This helps you properly catch the ball at
the right time. The optical expansion depth cue is
similar to the kinetic depth effect cue, except that
for the kinetic depth effect cue, your brain is
analyzing the apparent speed at which the object
changes location in space. In contrast, for the
optical expansion cue, your brain is analyzing the
rate at which the perceived size of the object
changes. A train that is traveling directly toward
you would exhibit zero kinetic depth effect but
would exhibit significant optical expansion.

To be completely clear, optical expansion does
not just involve an object appearing to get bigger
as it moves toward you in a vague way. Rather, it

involves an object getting bigger at a specific rate
that corresponds to its distance from the observ-
er. Your brain subconsciously understands and
has experience with this physics and can therefore
extract depth information.

12.4 Familiar Shape

If an object has a familiar shape that you have
experience with in the real world, your brain can
recall from memory the true three-dimensional
shape of that object and relate it to what you are
seeing, thereby enabling depth perception. In this
way, the three-dimensional shape of the object
can be perceived without needing any other depth
cues. Fig. 142 demonstrates the familiar shape
depth cue.

The image on the right in Fig. 142 contains in
reality a collection of straight black lines and gray
areas on a flat white screen or piece of paper.
However, the lines are arranged in the familiar
shape of what you see when you look at a real
table. You therefore perceive depth. The image

Figure 142. The familiar shape depth cue.
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Figure 143. The relative size depth cue.

on the left shows the exact same number of lines
attached to each other at the same places as the
right image, but it does not seem to have depth
because the angles of the lines don’t match what
you see when you visually observe a real table. In
other words, the object on the left does not have
the correct familiar shape that will occur when
viewing a real table. Note that for the image on
the right, I have intentionally drawn the table
without perspective effects so that the only depth
cue is the familiar shape cue.

12.5 Relative Size

If two objects in your field of view are the same
type of object, then your brain assumes that their
true physical sizes must be the same. Therefore,
your brain assumes that the difference in their
visually perceived sizes must be solely caused by
distance perspective effects. Your brain can thus
extract depth information based on how much
the perceived sizes of the two objects differ. For
instance, if two telephone poles are in view, then
the pole that appears to be three times taller than
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the other pole must be three times closer to you.

Fig. 143 demonstrates the relative size depth
cue. For the image on the right, your brain notices
that each of the four objects has the same shape
and therefore assumes that they all have the same
true size. Therefore, your brain perceives that the
smaller objects must be farther away from you. In
contrast, the objects in the left image in Fig. 143
all have the same size and therefore appear to be
at the same distance. I have intentionally chosen
an object with an unfamiliar size and shape so that
the only depth cue present is the relative size
depth cue (and the horizon line effect).

12.6 Familiar Size

If a certain object has a known true size, then its
perceived size corresponds to how far away it s,
even if there are no other objects in the field of
view to compare it to. Your brain can therefore
extract depth information from the perceived size
of the object relative to its known true size. For
instance, an apple is usually a few inches tall. An
apple that appears to be much smaller than this
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Figure 144. The familiar size depth cue.

Figure 145. The estimated size depth cue.

must therefore be far away. Fig. 144 demonstrates
the familiar size depth cue. The image on the left
in Fig. 144 includes two non-specific, unfamiliar
circular objects so that no depth cues are present.
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As a result, the two objects in the left image
appear to be the same distance away. In contrast,
the image on the right in Fig. 144 includes two
familiar objects. Because you are familiar with
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baseballs and soccer balls, and you know that the
true size of a baseball is smaller than the true size
of a soccer ball, your brain perceives that the
soccer ball must be farther away. In order to get
this effect to work well while looking at Fig. 144,
close one eye and try to visualize the balls as real
objects in a real scene that you are trying to reach
out and grab. Which ball would you reach first?

12.7 Estimated Size
Amazingly, even if you see an object by itself,
with nothing of the same shape to compare it to,
and the object has an unfamiliar shape and size,
your brain can still extract some depth informa-
tion from its perceived size by estimating its true
size. In other words, your brain estimates the
most probable true size of the object and then
uses this as if it were a familiar size depth cue.
The estimated size depth cue is not particularly
effective because the estimated size will typically
not be very accurate. Fig. 145 demonstrates the
estimated size depth cue.

Although the objects in the image on the right
in Fig. 145 are unfamiliar and unlike each other,
your brain may assume that cylindrical objects in
everyday life (like soup cans) tend to have a small
true size while conical objects in everyday life (like
Christmas trees) tend to have a large true size.
Thus, your brain may assume that the conical
object in the right image is much bigger in true
size and therefore must be farther away from you
than the cylindrical object because it does not
look that much bigger. If you are having a hard
time visually perceiving the cylinder-like object in
Fig. 145 as closer to you than the cone-like object,
don't worry because this depth cue is not very
effective.

12.8 Uniform Size

For a single, extended object that is known to be
roughly constant in size along its length, the parts
of the object that visually appear to be smaller
must be farther away from you because of the
perspective effects. For instance, a baseball bat is

Figure 146. The uniform size depth cue.
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roughly constant in cross-sectional area along its
length. Therefore, the end of the baseball bat that
appears to be much smaller than the other end
must be farther away from you.

Fig. 146 demonstrates the uniform size depth
cue. A cylindrical rod in the real world has a
uniform size along its length. Therefore, when
one end of the rod appears larger than the other
end, your brain correctly sees the larger end—the
red end in this case—as the closer end. When
looking at the image on the right in Fig. 1406,
notice how the red end of the rod seems to be
sticking out of the screen. In contrast, the image
on the left shows the same rod but without this
depth cue present.

12.9 Parallel Lines

This cue can be thought of as a general case of
the uniform size depth cue. This is because when
two lines are parallel to each other in the real
world, this is equivalent to a single object having
a uniform size along its length. For instance, a

straight road extending away from you has a
uniform width along its length but can be thought
of as two parallel lines (i.e. the two sides of the
road).

Two lines that are parallel to each other in the
real world will be perceived as converging toward
each other as they stretch farther away from you.
If your brain knows that the two lines are parallel
in the real world, it can extract depth information
based on how close the lines appear to be. The
places where the lines appear closer to each other
must be farther away from you.

Fig. 147 demonstrates the parallel lines depth
cue. The image on the right in Fig. 147 shows a
scene involving two roads on a flat ground plane
with this depth cue at work. Therefore, these
roads appear to be stretching away from you into
the distance. In contrast, the image on the left
shows the same scene but without this depth cue
present, leading it to look flat.

For a set of parallel lines that all extend exactly
away from you, they will all appear to meet at the

Figure 147. The parallel lines depth cue.
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central horizon point (i.e. at the central vanishing
point), as shown in Fig. 147. In contrast, if a set
of parallel lines extends away from you at an
oblique angle, then these lines will all appear to
meet at one vanishing point that is not at the
central horizon point. Such a situation is shown
in Fig. 148.

The image on the right of Fig. 148 shows two
sets of parallel lines on the ground that each has
its own non-central vanishing point. The image
on the left shows the same scene but without any
depth cues present.

In general, every set of parallel lines has its
own vanishing point. Therefore, there could be
thousands of different vanishing points in a single
image (or an infinite number, really). Interest-
ingly, if all the sets of parallel lines in a scene are
all parallel to the ground plane, then all of their
vanishing points will lie directly on the horizon
line (which is where the sky appears to meet the
ground). This may seem like a rare situation, but
humans love to build things with surfaces parallel
to the ground, so it is quite common. It is so
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Figure 148. The parallel lines depth cue.
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common, in fact, that some people mistakenly
think that vanishing points must always lie on the
horizon line.

In everyday life, humans tend to build objects
that have a box shape or consist of a collection of
box shapes, such as buildings, desks, cabinets,
shelves, books, tables, and beds. The edges of a
rectangular box form three sets of parallel lines.
Therefore, a collection of boxy objects that all
have their faces aligned with each other will only
have three vanishing points. First instance, a row
of houses has most of its edges appear as lines
converging at one of the three vanishing points.
For such cases, artists speak of drawing in three-
point perspective.

Sometimes in art, the vertical vanishing point
is ignored (so that all lines that are vertical in real
life are drawn as vertical on the paper). For a
collection of aligned boxy objects, this reduces
the situation down to two vanishing points, which
artists call two-point perspective. If there is a
collection of aligned boxy objects and two of the
dimensions are drawn without perspective, then
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Figure 149. Different artistic point perspective approaches.

/;/;/ 7 //ff’ff l‘\ \\\\\ AN \:Qi\
/] [HAVANAN

NATTT T NN

P AAERRRANN

N
P
)

Figure 150. The parallel lines depth cue.

there is only one vanishing point, which artists
call one-point perspective. These concepts are
shown in Fig. 149.

Note that the parallel lines depth cue is not a
special case of the horizon effect depth cue. The
perception of depth established by parallel lines
arises from the lines converging at a vanishing
point and not from objects being close to the
horizon line. In fact, the parallel lines depth cue
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works even if there is no horizon line at all. The
right image of Fig. 150 shows a situation where
there is no horizon line but there is a collection
of parallel lines converging at the central horizon
point.

In the image on the right of Fig. 150, all of the
lines that are running along the length of the
tunnel meet at the central vanishing point. In
contrast, the left image displays the same tunnel,
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Figure 151. The texture gradient depth cue.

Figure 152. The texture gradient depth cue, showing a canyon.
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Figure 153. The texture gradient depth cue.

Figure 154. The texture gradient depth cue arising from a collection of small objects..

117



Chapter 12. Human Depth Perception Cues

but without the parallel lines depth cue present,
insofar as that is possible. Note that if there is not
a horizon line but there are vanishing points, the
hotizon effect still occurs in the sense that the
closer an object appears to be to a vanishing
point, the farther away it seems to be. However,
the vanishing point horizon effect still is not the
parallel lines depth cue. You can have a central
horizon point giving rise to a horizon effect in a
scene even if no parallel lines are present.

12.10 Texture Gradient

Similar to how objects that are closer to you
appear larger, parts of the pattern in a texture that
are closer to you will appear larger. Your brain
can therefore extract depth information from
how the different parts of a texture compare to
each other in perceived size. Also, the texture of
a surface can indicate the tilt of the surface, which
can help portray the three-dimensional shape of
objects. Fig. 151 shows the texture gradient depth
cue. In the image on the left in Fig. 151, all of the
spots of the textured surface are perceived as
being the same size, the same shape, and at about
the same spacing, making this image appear flat.
In contrast, the image on the right shows that the
dots near the top of the image are smaller, closer
together, and more distorted than the other dots,
giving the impression that they are farther away.
Note that the left image and the right image in
Fig. 151 show the exact same textured surface
with the dots in the same places.

The texture gradient effect works not only on
flat ground planes. It can also portray the three-
dimensional shape of complicated objects and
scenes. For instance, Fig. 152 is the same as Fig.
151, except that a canyon has been cut in the
ground. The three-dimensional shape of the can-
yon in Fig. 152 is made apparent in the image on
the right by the texture gradient depth cue. Note
that there are no other depth cues present in this
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image (except for a small amount of recess
shading). The image on the left in Fig. 152 shows
the same texture and the same canyon but now
without the texture gradient depth cue present.

An additional example of the texture gradient
depth cue is shown in Fig. 153. As Fig. 153 shows,
a texture gradient does not have to consist solely
of independent features or objects. Rather, it can
consist of an interconnected pattern. The image
on the right includes the texture gradient effect.
As a result, the top of the image appears to be
farther away from you than the bottom of the
image. In contrast, the image on the left shows a
texture but without the texture gradient effect,
making it look flat.

Another example of the texture gradient depth
cue is shown in Fig. 154. As Fig. 154 shows, a
texture gradient does not have to consist of a
pattern that has been painted on a flat surface. It
can also consist of a large collection of three-
dimensional objects that are situated so that they
approximately form a flat surface (small rocks in
this case).

12.11 Horizon Effect
For an object sitting on the ground, the physics
dictates that the closer the object's center appears
to be to the horizon, the farther away the object
is from you. Your brain can therefore estimate
how far away an object on the ground is by how
close its center appears to be to the horizon line.
Fig. 155 shows the horizon effect depth cue.
In the image on the left, all three objects are at the
same vertical location in the image. In contrast,
the image on the right shows the same three
objects but at different vertical locations. Your
brain sees the blue cone as visually closer to the
horizon and therefore perceives that it is farther
away from you than the other objects. At the
same time, the red cylinder is visually the farthest
from the horizon line, so it seems the closest.
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Figure 155. The horizon effect depth cue.
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Figure 156. The horizon effect and parallel lines depth cues.

The hotizon can also take the form of a
vanishing point that is not necessarily the central
horizon point. For instance, for objects sitting in
a tunnel, the closer that an object appears to be to
the tunnel's vanishing point, the farther away it
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seems to be. Fig. 156 demonstrates the horizon
effect depth cue associated with a vanishing point
instead of a horizon line.

In the image on the right in Fig 1506, the blue
cone appears to be closer to the vanishing point
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and therefore is perceived to be farther away from
you. The image on the left shows the same scene,
insofar as it is possible, without the horizon effect
depth cue or the parallel lines depth cue.

12.12 Occlusion

When a near object is roughly in the same line of
sight as a more distant object, the near object will
partially or completely block the view of the
distant object (assuming that it’s not transparent).
Therefore, the object that is being blocked from
view must be farther away from you. This effect
is called occlusion, interposition, eclipsing, or
overlapping. Your brain understands this effect
and can use it to determine the relative distances
of objects. Fig. 157 demonstrates the occlusion
depth cue.

In the image on the left in Fig. 157, the three
objects are all clearly visible with no occlusion
and therefore you cannot tell which object is
closer. In contrast, the image on the right shows

the same objects but includes occlusion. You are

therefore able to perceive that the red cylinder is
closer to you and the blue cone is farther away.
(A small amount of horizon effect had to be
included to prevent the objects from unnaturally
penetrating each other.) Note that the occlusion
depth cue can only tell you which object is closer
to you. It cannot tell you the absolute distance of
an object.

The occlusion effect does not have to involve
three-dimensional shapes. Even with flat pieces
of paper, you can tell which piece of paper is
farther away because it is the one being occluded.
This is shown in Fig. 158.

The image on the right in Fig. 158 shows one
paper occluding another paper, in two different
configurations. In both configurations, the paper
that is being partially blocked appears to be far-
ther away.

The same two papers are shown in the image
on the left in Fig. 158 but without the occlusion
depth cue, making it impossible to tell which one

is farther away.

Figure 157. The occlusion effect depth cue.
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Figure 158. The occlusion effect depth cue.

Figure 159. The occlusion effect depth cue.
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Fig. 159 demonstrates how the front of an
object occluding its back indicates that the front
of the object is closer to you. The image on the
right in Fig. 159 shows a box that is defined by its
edges, presented in two different configurations.
The occlusion effect gives you a sense of which
face of the box is closest to you. In this way,
occlusion can help give a sense of depth to an
object. In contrast, the left image in Fig. 159
shows a box without occlusion information. As a
result, you can't tell which configuration the box
is in or which face is closest to you.

12.13 Surface Shading

The way that light falls on an object and scatters
away depends on the three-dimensional shape of
the object. Thus, your brain can extract depth
information from the shading on an object. The
parts of an object that are darker tend to be the
parts that are titled away from the light source.
Therefore, if the position of the light source can
be estimated, the tilt in three-dimensional space

of each part of an object's surface can be deduced
from its level of shading. The three-dimensional
shape of the overall object can then be mentally
reconstructed from the tilt of each part of its
surface. Fig. 160 shows the surface shading depth
cue for two simple objects.

Note that in this case, we are not focusing on
the depth perception related to the position of
each object but on the depth perception related
to each object's three-dimensional shape. In the
image on the right in Fig. 160, the surface shading
enables you to see the circular object as a three-
dimensional sphere and the other object as a
three-dimensional cylinder.

The fact that the observed shading changes
smoothly along the object’s surfaces enables you
to perceive the sides of the cylinder and the entire
sphere as smoothly round. In contrast, the image
on the left in Fig. 160 shows the same objects but
without surface shading. As a result, these two
objects look like flat paper cutouts. Shading is an
effective way for an artist to show depth.

Figure 160. The surface shading depth cue.
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Figure 161. The recess shading depth cue.
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Figure 162. The recess shading and parallel lines depth cues.
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Figure 163. The recess shading and texture gradient depth cues.

Figure 164. The shadow shape depth cue.
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Figure 165. The shadow shape depth cue.

12.14 Recess Shading

The points on an object’s or landscape’s surface
that are recessed will appear darker because light
has a harder time reaching down into the recess.
The observed recess shading therefore indicates
the depth and shape of the recess.

Using this depth cue, your brain is able to per-
ceive the presence, the shapes, and the depths of
holes, recesses, cracks, corners, inlets, and narrow
spaces. Fig. 161 demonstrates the recess shading
depth cue.

The image on the left in Fig. 161 shows a land-
scape containing three holes that have no recess
shading. As a result, they do not even look like
holes. In contrast, the image on the right in Fig.
161 shows the same holes but now with recess
shading included. As you can see, the shading
enables you to see the holes as holes and to see
their three-dimensional shapes.

Fig. 162 also demonstrates the recess shading
depth cue using a tunnel, this time combined with
the parallel lines depth cue. As a result of the
depth cues, the image on the right in Fig. 162
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appears to show an arched tunnel that stretches
away from you into the distance. As you can see,
including two depth cues instead of one makes
the image's sense of depth even more convincing.
For comparison, the image on the left in Fig. 162
shows the same tunnel without any depth cues,
insofar as that is possible.

Fig. 163 shows the same tunnel as in Fig. 162,
but now the image includes the texture gradient
and recess shading depth cues rather than the
parallel lines and recess shading depth cues. For
comparison, the image on the left in Fig. 163
shows the same tunnel without any depth cues,
insofar as that is possible.

12.15 Shadow Shape

The shape of a shadow depends directly on the
three-dimensional shape of the object that is
casting the shadow and the angle of illumination.
Therefore, your brain can partially deduce three-
dimensional shape information from an object's
shadow. Figs. 164 and 165 clearly demonstrate
the shadow shape depth cue.
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In the image on the left in Fig. 164, you can
see the outline of some creature, but it is hard to
discern its three-dimensional shape. In contrast,
the image on the right in Fig. 164 shows the same
creature but now its being illuminated from the
side so that its shadow falls on the left wall. The
shadow reveals the creature to be a T-Rex and
partially reveals the three-dimensional shape of
this T-Rex.

In general, this depth cue works even if the
illumination is not aimed directly toward a wall,
as demonstrated in Fig. 165. The image on the
right in Fig. 165 involves a shadow that is cast
obliquely on the ground. This shadow reveals that
the structure is a set of townhouses. This shadow
also enables your brain to more effectively see the
townhouses as three-dimensional objects. In con-
trast, the image on the left in Fig. 165 shows the
same structure without a shadow, which causes it
to appear as a non-descript blob of black. If the
angle of illumination changes, the shadow shape
changes in a corresponding way.

12.16 Shadow Size, Location, and Blurriness
The size, location, and blurriness of an object's
shadow all depend on how far away the object is
from the shadowed surface. In general, the far-
ther away an object is from the shadowed surface,
the larger, the blurrier, and the more shifted its
shadow will be. Your brain can therefore deduce
distance information from the size, location, and
blurriness of shadows. Fig. 166 demonstrates this
depth cue.

The image on the right in Fig. 166 shows three
balls and their shadows. The shadow of the right-
most ball is larger, blurrier, and more shifted
downward, indicating that the rightmost ball is
farther away from the ground and closer to you.
In contrast, the image on the left in Fig. 166 con-
tains the same three balls but without shadows so
that there is no depth to the scene beyond the
roundness of the balls. Fig. 167 also demonstrates
these shadow effects.

The image on the right in Fig. 167 shows the
shadow /location depth cue at work but does not

Figure 166. The shadow size, shadow location, and shadow blurriness depth cues.
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Figure 167. The shadow location depth cue.

include differences in shadow blurriness or sha-
dow size. Even with just this one type of shadow
depth cue (the shadow location depth cue), your
brain can still perceive that the rightmost paper is
farther away from the checkered surface and thus
closer to you. In contrast, the image on the left in
Fig. 167 does not have any shadow depth cues
present and thus there is no sense of depth.

12.17 Atmospheric Effects
When an object is far away, the air between you
and the object changes its appearance. Air is not
perfectly transparent. Rather, the nitrogen and
oxygen molecules that make up 99% of air give a
distant object a slight whitish-blue tint under blue
sky daytime lighting conditions. As an additional
effect, the water droplets in the air can give the
air a slight white or murky grey appearance. Both
of these effects also cause the observed image to
diminish in observed contrast, color saturation,
and sharpness.

The farther away an object is, the more it will
have a flat, muted blue-white color and a softer,
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blurrier appearance. Your brain can deduce the
distance of an object based on how much its
image is altered by atmospheric effects. Note that
atmospheric effects will only become significant
when the light from an observed object travels
through large amounts of air. As a result, this cue
only works for objects that are far away, such as
mountains, bridges, and buildings (exceptifit's an
extremely foggy day). Unless it’s a very foggy day,
you won’t notice atmospheric effects for objects
that are only a few feet away, or even a few dozen
feet away.

During storms, atmospheric effects will give
distant objects a gray tint rather than whitish-blue
and sometimes even a green tint when tornadoes
are present. At sunset and sunrise, atmospheric
effects will give distant objects red, pink, orange,
and yellow tints.

You probably use this visual cue more than
you realize. Astronauts who have walked on the
moon reported that because the moon lacked an
atmosphere, the distant hills looked much closer
than they actually were, which was disorienting.
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Figure 168. The atmospheric effects depth cue shown using a simple drawing.

Figure 169. The atmospheric effects depth cue shown using a photo of the real world.

They reported that as they walked toward a have different shades and colors because of the
hill, it seemed to recede at the same rate. Fig. 168 intervening air, depending on how far away they
demonstrates the atmospheric effects depth cue. are. In contrast, the image on the left in Fig. 168
In the image on the right in Fig. 168, a series of shows the exact same mountains but without any
mountains at different distances are observed to atmospheric effects. As a result, all the mountains
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visually merge together and look flat. Note that I
intentionally drew Fig. 168 as simple as possible
to clearly demonstrate atmospheric effects.

Fig. 169 also exhibits atmospheric effects but
now using an actual photograph of the real world.
The image on the right in Fig. 169 is a photograph
of a mountain landscape with no photo editing or
digital enhancements. The whitish-blue tints in
this photo are completely natural and are what
you would see with your naked eye if you were
actually standing there looking out at this scene.
This photograph shows that the farther away a
mountain is, the more it appears whitish-blue,
unsaturated, and contrast deficient. Note that the
sky is whitish-blue for the same reason that the
distant mountains are whitish-blue; because of
the effect of the atmosphere on the light passing
through it.

The image on the left in Fig. 169 shows the
exact same photo but without any atmospheric
effects. To create this image on the left, I took the
raw photograph shown on the right and carefully
removed the atmospheric effects using photo
editing software and my understanding of the
physics. This involved removing the whitish-blue
tint and increasing the saturation and contrast,
one layer of mountains at a time. Notice how all
of the mountains in the left image in Fig. 169
seem to merge together into one indistinct mass
without much depth. Interestingly, the image on
the left looks like it came from a low-quality video
game that failed to properly include atmospheric
effects.

12.18 Accommodation and Pupil Response

In order for the human eye to propetly focus on
objects that are at different distances from it, the
ciliary muscles in the eye must change the shape
of the eye lens by changing the amount of muscle
contraction. To bring a distant object into focus,
the ciliary muscles relax, which allows the lens to
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flatten. To bring a near object into focus, the
ciliary muscles contract, which then pushes the
lens into a rounder shape.

The human eye has a sensory apparatus to
detect how much the ciliary muscles have been
contracted. In this way, your brain can deduce the
distance of an object by having the eyes focus on
it and then sensing the contraction level of the
ciliary muscles.

This depth cue depends on muscle contraction
information rather than image information, so I
cannot demonstrate how it works using images.
Also, a regular computer screen or printed photo
cannot enable the accommodation depth cue to
be used.

Pupil response is also used for depth informa-
tion during accommodation. The size of the pupil
slightly affects how much an object appears to be
in focus. The lens in each eye gives rise to optical
aberrations. As a result, if more of the lens is used,
then the image is blurrier. Thus, your pupils work
along with the ciliary muscles to propetly bring
objects into focus. Your brain then utilizes pupil
constriction information along with ciliary muscle
contraction information to determine the object's
distance.

12.19 Depth from Defocusing
When the human eye brings a certain real object
into focus, objects that are at different distances
will appear blurrier. The amount of observed blur
depends on how far away in the forward direction
the other objects are from the object that is in
focus. Specifically, the farther away an object is in
the gazing direction from the object that is in
focus, the blurrier it will appear. Your brain can
therefore deduce distance from the amount of
defocusing blur. Fig. 170 demonstrates the depth
from defocusing visual depth perception cue.
The image on the left in Fig. 170 shows three
strawberries without defocusing blur. As a result,
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Figure 170. The depth from defocusing cue.

they all appear to be the same distance away. In
contrast, the image on the right in Fig. 170 shows
the same three strawberries with defocusing blur
included. (I have also included a small amount of
the relative size depth cue to prevent the image
from looking unnatural.) As a result, the straw-
berry on the left appears to be closer to you.

12.20 Binocular Parallax

As demonstrated, the human visual system uses
about nineteen different monocular depth cues.
The exact number will depend on how you decide
to group special cases into categories, such as the
shadow depth cues.

In addition to all of these human monocular
depth perception cues, there are two binocular
visual cues used for depth perception, namely
binocular parallax and vergence. This book was
specifically about monocular depth cues and not
binocular cues, so I include here the binocular
depth cues for completeness, but only briefly.

One of the most important human depth cues
is binocular (two-eye) parallax. Because each eye
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is at a different location in the head, each eye sees
a slightly different view of the world. The differ-
ence between what your left eye sees and what
your right eye sees depends directly on the three-
dimensional shape of each object and its location
in the three-dimensional world. The closer that an

Figure 171. The binocular parallax depth cue.
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object is to you, the greater will be the difference
between what your left eye sees and what your
right eye sees. The human brain is therefore able
to extract depth information from the difference
between what your two eyes see. If the image of
a chair seen by your left eye and the image of the
same chair seen by your right eye at the same time
are nearly identical, then the chair must be far
away. In contrast, if these two images of the chair
are very different, then the object must be very
close. This effect is represented in Fig. 171.

The overall geometric effect is called parallax.
When a human is using two eyes in order to take
advantage of parallax, it is called two-eye parallax
or binocular parallax. The difference between the
left-eye image and the right-eye is called binocular
disparity. The ability of the brain to extract depth
information from this binocular disparity is called
stereopsis.

12.21 Vergence

The other binocular depth cue is vergence. When
your eyes both look directly at the same object,
they must both rotate slightly toward each other

Figure 172. The binocular vergence depth cue.
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to do this. How much your eyes rotate depends
on how close the object is. When an object is far
away from you, your two eyes only rotate toward
each other a small amount in order to both be
looking directly at the same object. In contrast,
when an object is close to you, your two eyes
must rotate toward each other a large amount in
order to both be looking directly at the same
object. This is demonstrated in Fig. 172.

The muscles that are involved in the eyeball
rotations send signals to the brain indicating how
much the eyes are rotated. The brain can then
extract depth from this information. Note that
this is an oculomotor depth cue and not purely a
visual depth cue, so images on a flat screen can
never enable this depth cue.

12.22 Summary

In summary, there are two binocular depth cues
and about nineteen monocular depth cues. So-
called “3D” movie theaters that present binocular
parallax depth cue information in addition to the
traditional monocular depth cues require wearing
special glasses to properly make your two eyes see
slightly different images. These “3D” movies do
not include all of the depth cues and are therefore
not fully three-dimensional. Thus, these movies
are more accurately called stereoscopic movies.
Although “3D” movies do include the binocular
parallax depth cue, this depth cue is not that
useful for objects that are more than a few dozen
feet away. This means that adding in the binocular
parallax depth cue to a movie’s presentation only
gives noticeable improvements in 3D-realism for
near objects in the filmed scene.

Also, regular movies that don't require wearing
those special glasses already contain almost a// of
the monocular depth cues and are thus already
very close to being 3D-realistic. As a result, so-
called “3D” movies are not that much more 3D-
realistic than regular movies. This is probably why
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so-called “3D” movies have not become popular
and have not displaced regular movies, despite
having existed for over a hundred years.

Neither regular movies nor so-called “3D”
movies enable the accommodation depth cue, the
pupil response depth cue, the true depth from
defocusing depth cue, the vergence depth cue, or
the true motion parallax depth cue. Despite all of
these missing depth cues, amazingly, movies still
appear convincingly three-dimensional because
they enable all of the other depth cues (except
that regular movies do not include the binocular
parallax cue, as already noted). True holograms
enable all of the depth cues that regular movies
and “3D” movies do not, in addition to almost all
of the other depth cues and are therefore the
closest to being 3D-realistic images. However, at
the time of this writing, true holograms are only
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still images and not moving pictures, and thus
lack the kinetic depth effect. Additionally, true
holograms are only a single color, which reduces
the sense of realism. Perhaps in the future scien-
tists will discover how to present true holograms
in multiple colors and as moving pictures.

In conclusion, human vision is quite capable
of seeing depth even if only one eye is function-
ing. Fortunately, this means that humans can see
depth quite well when looking at regular movie
screens, computer screens, television screens, and
the screens of mobile devices (assuming that the
displayed images are properly conveying mono-
cular depth cues). It also means that artists who
understand the monocular depth cues can create
a convincing sense of depth when painting or
drawing on paper, canvas, wood, or any other flat
surface.
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