
  

   

  

  

Fundamentals of 
Human Monocular 
Depth Perception 

 

The Foundational Physics and Geometry of  
the Monocular Depth Perception of Humans 

 

Christopher S. Baird 



  

   

 

 

[This page is intentionally left blank] 



  

   

Fundamentals of 
Human Monocular 
Depth Perception 

The Foundational Physics and Geometry of  

the Monocular Depth Perception of Humans 

Dr. Christopher S. Baird 

West Texas A&M University 

  



  

 

2025 

 

Public Domain 

Open Educational Resource (OER) 

 

All text, diagrams, figures, tables, and data in this book have been 

placed in the public domain by the author, Dr. Christopher S. Baird.  

Anyone may reproduce, print, transmit, upload, distribute, present, or  

change any part of this book or all of this book without attribution and 

without permission. All images in this book are original creations of 

Dr. Christopher S. Baird and have been placed in the public domain. 

  



 

   

Contents 

1   The Basics of Light, Color, and Vision 1 

1.1  Fundamentals of Light and Vision 2 

1.2  Detecting the Properties of Light 3 

1.3  Detecting Color 4 

 

2   The Coordinate Systems of Human Monocular Vision 7 

2.1  Defining the Image Coordinates 8 

2.2  Defining the Object Coordinates: Rectangular Coor. and Cylindrical Coor. About the z Axis 8 

2.3  Defining the Object Coordinates: Spherical Coordinates 10 

2.4  Defining the Object Coordinates: Cylindrical Coordinates About the y Axis 11 

 

3   Plotting the Observed Location as a Function of the Object’s Phys. Loc. 13 

3.1  Plotting for Rectangular Coordinates and Cylindrical Coordinates About the z Axis 13 

3.2  Plotting for Spherical Coordinates 20 

3.3  Plotting for Cylindrical Coordinates About the y Axis 20 

 

4   Observed Object Length as a Function of Position 27 

4.1  Observed Object Length in Rectangular Coordinates/Cylindrical Coordinates About the z Axis 29 

4.2  Observed Object Length in Spherical Coordinates 31 

4.3  Observed Object Length in Cylindrical Coordinates About the y Axis 31 

 

5   Plotting Observed Length as a Function of Spherical Coordinates 35 

 

6   Plotting Observed Length as a Function of Original Object Coordinates 41 

 

7   Observed Sphere Diameter as a Function of Position 49 
 

8   Observed Object Area as a Function of Position 51 

8.1  Observed Object Area in Rectangular Coordinate/Cylindrical Coordinates About the z Axis 52 

8.2  Observed Object Area in Spherical Coordinates 53 

8.3  Observed Object Area in Cylindrical Coordinates About the y Axis 53 

 

9   Plotting the Observed Object Area as a Function of Spherical Coordinates 55 



 

 

 

10   Plotting the Observed Object Area as a Function of Original Object Coor. 61 
 

11   Mapping to a Flat Display Screen 67 

11.1  Rectilinear Projection 68 

11.2  Stereographic Projection 70 

11.3  Equidistant Projection 71 

11.4  Equisolid Angle Projection 72 

11.5  Orthographic Projection 73 

11.6  Slight Pincushion Projection 73 

11.7  Plotting the Flat Display Screen Projection Equations 74 

11.8  Using Rectangular Display Screen Coordinates 75 

11.9  Using Rectangular Coordinates for the Object Location 76 

11.10  Using Cylindrical Coordinates About the z Axis for the Object Location 76 

11.11  Using Spherical Coordinates for the Object Location 76 

11.12  Using Cylindrical Coordinates About y Axis for the Object Location 77 

11.13  Plotting Various Surfaces Using All Projection Methods 77 

 

12   Human Depth Perception Cues 107 

12.1  Motion Parallax 108 

12.2  Kinetic Depth Effect 108 

12.3  Depth from Optical Expansion 108 

12.4  Familiar Shape 109 

12.5  Relative Size 110 

12.6  Familiar Size 110 

12.7  Estimated Size 112 

12.8  Uniform Size 112 

12.9  Parallel Lines 113 

12.10  Texture Gradient 118 

12.11  Horizon Effect 118 

12.12  Occlusion 120 

12.13  Surface Shading 122 

12.14  Recess Shading 125 

12.15  Shadow Shape 125 

12.16  Shadow Size, Location, and Blurriness 126 

12.17  Atmospheric Effects 127 

12.18  Accommodation and Pupil Response 129 

12.19  Depth from Defocusing 129 

12.20  Binocular Parallax 130 

12.21  Vergence 131 

12.22  Summary 131 

 

Citations  133



  

1 

Chapter 1 
The Basics of Light, Color, and Vision 

The human visual system uses both monocular 

(one-eye) and binocular (two-eye) visual cues in 

order to enable depth perception1. Human vision 

involves light from the three-dimensional world 

being projected onto the two-dimensional retinas. 

Because of this, visual cues must be used in order 

to infer depth, i.e. in order to enable the visual 

perception of the three-dimensional nature of the 

external world2. 

It is often thought by the general public that 

human depth perception arises solely from the 

use of two eyes. However, traditional computer 

screens, mobile device screens, television screens, 

projector screens, paintings, drawings, photo-

graphs, and printed posters all present the same 

image to both eyes (except in the rare cases where 

lenticular lens, holography, “3D” glasses, or other 

stereoscopic systems are used). Therefore, the 

perception of depth that is experienced when 

viewing images presented through any of these 

methods relies solely on one-eye depth percep-

tion cues3. In other words, in almost all situations 

where a human is viewing a three-dimensional 

object that is not literally present in physical form, 

it is only monocular depth cues that are being 

used to perceive depth, and not binocular depth 

cues. For this reason, monocular depth percep-

tion cues are far more significant and are used far 

more frequently than many people realize.  

Artists who draw, paint, or print on flat sur-

faces, as well as illustrators, graphic designers, and 

computer animators, all rely solely on monocular 

depth perception cues in most cases in order to 

convey a sense of depth4. As such, becoming an 

expert in any of these fields involves learning the 

foundational principles of human monocular 

depth perception. 

Binocular depth perception cues exploit the 

use of two eyes that are laterally separated by a 

fixed distance5. Humans can only make use of 

binocular depth cues when directly viewing the 

physical three-dimensional world and when view-

ing images created by stereoscopic systems such 

as “3D” movies, holograms, stereoscopes, and 

lenticular lens systems. In all other cases—such as 

when viewing paintings, drawings, photographs, 

magazines, posters, television screens, movie 

screens, computer screens, and mobile device 

screens—the human visual system must rely 

solely on monocular depth cues. 

The purpose of this book is to pursue a sys-

tematic investigation of the foundational physics 

and geometry of human monocular depth per-

ception. Human monocular depth perception is 

broadly significant because it involves the fields 

of mathematics, physics, biology, psychology, art, 
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and engineering. Specifically, human monocular 

depth perception involves mathematics because it 

deals with geometric relationships6; it involves 

physics because it deals with the physical nature 

of light and motion7; it involves biology because 

it deals with the human eyes and brain8; it involves 

psychology because it deals with human percep-

tion9; it involves art because it is employed by 

artists to create a convincing sense of depth10; and 

it involves engineering because it enables engi-

neers to construct and display three-dimensional 

models using computers, as well as build machine 

vision systems11. Therefore, this book should be 

of interest to mathematicians, physicists, biolo-

gists, psychologists, photographers, illustrators, 

artists, engineers, graphic designers, video game 

developers, and computer animators. In view of 

this fact, the language used in this book has been 

deliberately designed to be accessible to a broad 

audience. 

1.1 Fundamentals of Light and Vision 

A physical three-dimensional object in the real 

world reflects, transmits, or emits light from the 

various points on its surface. Regardless of where 

the light originally came from (whether from 

reflection, transmission, or emission), each point 

on the object’s surface acts like a source of light 

waves that travel radially outward from that point 

in all possible directions12. These light waves then 

travel outward until they encounter the human 

eye or some other object. The light coming from 

the object contains information about the object’s 

shape and its spatial distribution of color, bright-

ness, and polarization13. However, as the light 

waves travel away from the various points on the 

object’s surface, the light waves overlap with each 

other, thereby mixing up the information that is 

being carried by the light.  

When some of the mixed-up light from the 

object propagates through a converging lens, the 

refractive effects of the lens cause the light waves 

to be redirected and collected. All of the waves of 

light that emanated from the same point on the 

object’s surface are redirected by the lens so that 

they all meet at the same point in space, called the 

image point. This process happens for all of the 

sets of light waves emanating from all of the 

points on the object’s surface, meaning that there 

is a corresponding image point in physical three-

dimensional space for each object point. The final 

result is that the light is assembled into a three-

dimensional optical image which has the same 

shape, spatial distribution of color, spatial distri-

bution of brightness, and spatial distribution of 

polarization as the original object. Because there 

is a unique one-to-one mapping from each object 

point to an associated image point for every point 

on the surface of the three-dimensional physical 

object, the optical image is necessarily three-

dimensional14. 

However, capturing and effectively analyzing a 

three-dimensional optical image is difficult. For 

this reason, a two-dimensional image capture sur-

face is typically used, whether that be a projector 

screen, a camera sensor, or the eye’s retina. The 

two-dimensional image capture surface intercepts 

most of the light that was destined to form the 

three-dimensional optical image. Because of this, 

the three-dimensional optical image is projected 

and collapsed down to a two-dimensional image.  

Note that the imaging surface captures most 

of the light associated with the three-dimensional 

optical image, so it would be incorrect to say that 

the captured two-dimensional image is a cross-

section of the three-dimensional optical image. 

Rather, the entire three-dimensional image is con-

densed down to a two-dimensional image and is 

captured15. The ultimate result is that when a two-

dimensional image capture surface is used to 

capture the three-dimensional optical image that 

was formed by a converging lens, the object’s 
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explicit depth information is lost. This is the case 

with the images captured by human retinas. 

However, because of the physics and geo-

metry that constrain how real three-dimensional 

objects can exist and move throughout three-

dimensional space, depth information is still 

indirectly retained in the two-dimensional images 

that are captured by the retina. The human visual 

system must therefore use advanced techniques 

that rely on assumptions about how the physics 

and geometry works in order to properly extract 

the indirect depth information contained in the 

two-dimensional images, as well as fill in some of 

the depth information that was lost, in order to 

create the visual experience in the brain of seeing 

three-dimensional objects. These techniques are 

called depth perception cues. It’s amazing how 

convincingly three-dimensional our visual per-

ception of the outside world feels despite the fact 

that our retinas are actually only capturing two-

dimensional images. 

When the light rays coming from an external 

object encounter the human eye, they first travel 

through the transparent cornea at the front, then 

they travel through the aqueous humor behind 

the cornea, and then they travel through the main 

lens, as shown in Fig. 1. In doing so, the rays of 

light are redirected and form an image on the 

retina that is on the back inner surface of the eye. 

The cornea, aqueous humor, and the main lens 

collectively act like a single, effective lens. This 

effective lens is a converging, adaptive, gradient-

index lens16. 

After exiting the lens, these rays of light then 

travel through the transparent, gel-like vitreous 

humor and then strike the retina, forming a two-

dimensional image that is captured. In this way, 

the three-dimensional optical image that would 

be formed by the effective lens of the eye if 

nothing was in the way is collapsed into a two-

dimensional image on the retina. 

The retina contains a dense spatial array of 

photoreceptor cells that are able to capture and 

convert bits of light to electrical signals17. After 

collection and pre-processing of the electrical 

signals in the eye, these signals are sent along the 

optic nerves to the brain where they are then 

assembled and visually experienced as a three-

dimensional object.  

1.2 Detecting the Properties of Light 

Human vision is able to detect and capture four 

basic properties of light: color, brightness, spatial 

distribution, and temporal variation. 

Brightness is detected by the retina’s ability to 

measure the varying amounts of optical energy 

density striking a group of photoreceptor cells 

each fraction of a second and produce electric 

signals that encode this information18.  

The spatial distribution of the light is captured 

by employing a spatial array of sensitive photo-

receptor cells distributed across the retina. 

The temporal variation of the light is captured 

by continuously reacquiring and stacking images 

at a high frequency; about 20 to 60 images per 

second, depending on the illumination levels and 

other factors19. The image acquisition frequency 

of the human visual system depends strongly on 

the overall brightness of the scene that is being Figure 1. Anatomy of the human eye. 



Chapter 1. The Basics of Light, Color, and Vision 

4 

observed. In low-lighting conditions, the human 

brain sets the image acquisition frequency to a 

lower value because this allows the retinas more 

time to collect more light for each image, thereby 

boosting sensitivity20. In this way, a high temporal 

resolution is sacrificed to enable detection of 

objects in low-lighting conditions. 

The ability of human vision to detect the tem-

poral variation information that is carried by a 

stream of light is crucial to detecting the motion 

of physical objects. The true motion of an object 

through three-dimensional space is governed by 

the laws of physics. Because of this, depth infor-

mation can be extracted from the observed 

motion of the object. In this way, the human 

visual system’s ability to detect the temporal 

variation of the light entering the eye helps enable 

depth perception. Depth cues that use motion 

include motion parallax, the kinetic depth effect, 

and optical expansion. 

The high frequency of image acquisition in 

human vision enables motion perception at a high 

temporal resolution, which causes depth cues that 

use motion to be highly effective. For this reason, 

motion parallax, the kinetic depth effect, and 

optical expansion tend to be the most accurate 

and the most frequently used monocular depth 

perception cues. 

Interestingly, because a low lighting condition 

leads the human visual system to use a low image 

acquisition frequency, a low lighting condition 

impairs the use of motion-related depth cues and 

thereby ultimately causes a decreased ability to 

properly perceive depth21. 

1.3 Detecting Color 

The color information carried by the light that 

enters the eye is detected through the utilization 

of three different types of cone-shaped photo-

receptor cells that are sensitive to three different 

wavelength ranges: long-wavelength colors (L), 

mid-wavelength colors (M) and short-wavelength 

colors (S).  The L, M, and S cone cells are often 

also referred to as red-sensitive, green-sensitive, 

and blue-sensitive cone cells, respectively. The 

red-sensitive cone cells can detect red colors 

more sensitively than the other two cone types. 

The green-sensitive cone cells can detect green 

colors more sensitively than the other two types. 

And the blue-sensitive cone cells can detect blue 

colors more sensitively than the other two types.  

With that said, referring to the cone cells types 

as red, green, and blue can be misleading because 

each type detects a wide range of colors rather 

than just a single color. The red-sensitive cone 

cells detect red, orange, yellow, and green colors. 

The green-sensitive cone cells detect red, orange, 

yellow, green, and blue colors. Lastly, the blue-

sensitive cone cells detect green, blue, and violet 

colors. By comparing the relative strength of the 

electrical signals coming from a spatial group of 

L, M, and S cone cells, the human brain is able to 

reconstruct the original color22. 

The central part of the retina called the macula 

has a far higher density of cone cells than any-

where else in the retina. As a result, the part of the 

optical image that lands on the macula can be 

experienced at a far higher resolution than other 

parts of the image. The central part of the macula, 

called the fovea, is the part of the macula with the 

highest cone cell density, reaching a peak density 

of nearly 200,000 cone cells per square milli-

meter23.  

The fovea is almost exactly lined up with the 

eye’s optical axis, which is the line that is perpen-

dicular to the plane of the lens and runs through 

the center of the lens. This arrangement has the 

benefit of the fovea (which sees with the highest 

resolution) being placed almost exactly at the 

location where lies the part of the image that has 

the highest intensity and the lowest amount of 

chromatic aberration, because it is lined up with 
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the center of the lens. 

This arrangement also has the benefit of being 

aligned with the gaze direction, meaning that if a 

person wants a certain part of a distant object to 

have its image fall on the fovea, thus enabling the 

person to see that part of the distant object in the 

greatest detail, the person must simply gaze 

directly at that part of the distant object. In other 

words, in order for a person to see as much detail 

as possible for a particular part of a distant object, 

he must simply point the lens of each eye directly 

at that part of the distant object. No matter where 

a person looks, the fovea stays aligned with the 

gaze direction and therefore stays aligned with the 

highest-resolution part of the received image.  

High-resolution color central vision in good 

lighting is handled by the macula, which is the 

larger area that contains the fovea. Central vision 

therefore spans the polar angles from θ = 0° to 

9° relative to the optical axis. About 90% of the 

visual information sent to the brain from the 

retina originates from the macula. Therefore, the 

parts of the image of the observed external world 

that lies at polar angles less than 9° are the most 

important and seen in the greatest detail. This is 

not as limiting as it may sound because a person 

can always redirect his or her gaze to directly look 

at whatever is interesting and thereby bring the 

visual perception of it into high resolution. 

The visual field that exists outside of central 

vision, which corresponds to polar angles greater 

than 9°, is called peripheral vision. The outermost 

portion of peripheral vision is called far peri-

pheral vision, which corresponds to the polar 

angles greater than 60°. The highest-resolution 

vision happens only in the fovea, which spans 

polar angles from 0° to 1°. Thus, visual activities 

that require the highest-resolution vision, such as 

reading and drawing, must happen mostly in the 

fovea. Because foveal vision only happens for 

polar angles of less than one degree, a person 

must continuously shift his gaze as he reads or 

draws in order to process the whole page. 

Note that the visual field that is experienced 

by a single human eye does not extend uniformly 

to the hemisphere’s edge at θ = 90°. Rather, the 

portion of the visual field by the nose has its limit 

typically below 90° (depending on both the gaze 

direction and the size of the nose), while the 

portion of the visual field on the side opposite of 

the nose typically extends beyond 90°. However, 

for the sake of simplicity, we will assume in this 

book that the limit of the human monocular 

visual field is the circle at 90°. Considering that 

almost all of human vision occurs in the central 

region and in the near peripheral region, this 

simplification is not as drastic as it sounds. 

In addition to the color-sensitive cone-shaped 

photoreceptor cells, the retina also contains an 

array of rod-shaped photoreceptor cells. Under 

normal lighting conditions, the contributions to 

vision from the rod cells are negligible. In con-

trast, under low-lighting conditions, the rod cells 

are the dominant photoreceptor cells enabling 

vision. This is because each rod cell is about a 

hundred to a thousand times more sensitive than 

a single cone cell, once fully adapted. This is also 

because there are about twenty times more rod 

cells in the retina than cones cells, because several 

rod cells couple to the same single output signal 

(via the same interneuron), and because rod cells 

collect light over longer periods of time for each 

captured image than cone cells. 

The price of extremely heightened sensitivity, 

which is ultimately what enables vision in low-

light situations, is that rod-mediated vision has a 

much lower spatial resolution, a much lower tem-

poral resolution, and zero color differentiation. In 

everyday terms, this means that when there is very 

little light present in the environment, humans 

cannot see details well, cannot see rapid changes 

well, and cannot see color. However, this is still 
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better than seeing nothing at all when in low-light 

situations! 

In summary, under normal lighting conditions, 

humans can effectively see and distinguish colors, 

brightness levels, the spatial distribution of the 

light, and the temporal variation of the light. In 

contrast, properties of light which humans cannot 

see include wave polarization, wave phase, and 

momentum. However, using appropriately built 

cameras, humans can indirectly see these other 

properties of light.

 

 



  

7 

Chapter 2 
The Coordinate Systems of 
Human Monocular Vision

The casting of an image of the three-dimensional 

world onto the concave spherical retina inside the 

eye is equivalent to the direct projection of the 

three-dimensional world onto a convex spherical 

front surface that is concentric with the eye. The 

casting of the image that was formed by the eye’s 

effective lens onto the concave retina generates 

an image that is inverted top-to-bottom and also 

inverted left-to-right, relative to the true physical 

reality. 

However, when processing the captured opti-

cal image, the brain corrects for this inversion by 

reversing the image bottom-to-top and right-to-

left. Thus, the final image that is experienced by 

the brain is equivalent to the projection of the 

external world onto a convex spherical mathema-

tical surface that surrounds and is concentric with 

the eye. For the sake of simplicity, this book will 

assume that vision consists of the external world 

being projected directly onto a convex spherical 

front surface. 

Also, for simplicity, let us assume that the eye 

is always located at the origin of our coordinate 

system and the eye is always looking in the same 

direction, which we will call the z direction. In this 

approach, which is often used in computer-aided 

design and animation, the real-world process of 

the eye shifting its gaze in different directions is 

mathematically implemented by leaving the eye 

gazing in the z direction and rotating the entire 

world in corresponding ways. Similarly, the eye 

physically moving its location (such as when a 

person walks along a sidewalk) is implemented 

mathematically by leaving the eye at the origin 

and shifting the entire world appropriately. 

In order to mathematically analyze human 

monocular depth perception, let us carefully 

define the most common coordinate systems. 

Because the three-dimensional physical world 

is directly projected onto a two-dimensional con-

vex spherical image capture surface, the location 

of an object in the captured image, which is what 

the person sees, is specified using the angular 

spherical coordinates. As the result of the human 

retina being spherical, using any other image 

capture surface will introduce distortions com-

pared to what the eye actually sees. For instance, 

capturing an image of the real world on a flat 

camera sensor, which is typically what cameras 

use, will necessarily introduce distortion. Because 

such complications do not arise if a real retina is 

observing the real world, these complications will 

be avoided until the end of this book. 

Let us define the “viewing axis” as the gaze 
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direction, i.e. the direction that extends from the 

center of the fovea through the center of the lens 

to the outside world. I will sometimes also call the 

viewing axis the “central axis.” Because we are 

only dealing with monocular vision, let us define 

the observer as a single human eye. 

2.1 Defining the Image Coordinates 

The angular spherical image coordinates are de-

picted in Fig. 2. They are defined as follows. 

The image point’s polar angle θ is the angle 

between the viewing axis and the line that con-

nects the image point and the observer. The angle 

θ is zero on the viewing axis and increases in value 

as it extends away from the viewing axis. This 

angle ends at the edge of the viewing field, which 

is assumed to be at θ = 90°. Sometimes the word 

“latitude” is used to refer to this type of angle. 

However, latitude starts at a value of 90° on the 

viewing axis and decreases until it is zero on the 

edge of the field of view. In other words, the 

value for the latitude equals (90° - θ). To avoid 

unnecessary confusion, latitude will not be used 

in this book. 

The image point’s azimuthal angle φ is the 

angle between the +x axis (which points right-

wards along the image capture surface) and the 

line that connects the image point and the 

viewing axis. The angle φ is zero when the object 

is situated directly to the right of the viewing axis 

and increases in value as the object sweeps 

counterclockwise. 

2.2 Defining the Object Coordinates: 

Rectangular Coordinates and Cylindrical 

Coordinates About the z Axis 

The true location of a physical object in three-

dimensional space can be specified using various 

coordinate systems. One of the most commonly 

used object coordinate systems is the rectangular 

coordinate system. The rectangular coordinate 

system is especially appropriate when the physical 

objects are rectangular solids, as is often the case 

with human-made objects. 

In the process of determining the manner in 

which the object point in rectangular coordinates 

physically maps to the corresponding image point 

in spherical coordinates, we end up establishing 

another coordinate system, which is cylindrical 

coordinates about the z axis. Thus, rectangular 

coordinates and cylindrical coordinates about the 

z axis must be handled at the same time. Note that 

we are using a left-handed rectangular coordinate 

system in this book because that is the most 

natural system to use from the viewpoint of the 

human eye. 

The rectangular object coordinates and the 

cylindrical object coordinates about the z axis are 

shown in Fig. 3. They are defined as follows. 

The x coordinate is the horizontal distance of 

the object from the viewing axis along the object 

plane. The object plane is the flat plane that 

contains the location of the object and is perpen-

dicular to the viewing axis. The x coordinate starts 

at zero on the vertical axis of the object plane and 

increases in value as it extends rightward away 

from the vertical axis. 

The y coordinate is the vertical distance of the 

object from the viewing axis along the object 

plane. The y coordinate starts at zero on the 

horizontal axis of the object plane and increases 

in value as it extends upward away from the 

horizontal axis. 

The z coordinate is the distance between the 

θ 
φ 

Figure 2. The image coordinate system. 
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object plane and the plane that contains the 

observer that is parallel to the object plane. The z 

coordinate starts at zero on the plane containing 

the observer and increases in value as it extends 

forward, away from the observer in a direction 

that is parallel to the viewing axis. 

The cylindrical radial coordinate ρ is the dis-

tance between the object’s location and the point 

where the viewing axis intersects the object plane. 

The ρ coordinate starts at zero on the viewing axis 

and increases in value as it extends within the 

object plane away from the viewing axis. 

The azimuthal angle φ is the angle between the 

+x axis and the line within the object plane that 

connects the object’s location and the viewing 

axis. The angle φ is zero when the object is sitting 

directly to the right of the viewing axis (i.e. on the 

+x axis) and increases in value as the object 

sweeps counterclockwise around the viewing axis 

while staying within the object plane. 

The azimuthal angle of cylindrical coordinates 

about the z axis is the same as the azimuthal angle 

of spherical coordinates. This means that the 

azimuthal angle of the object’s physical location 

has the same value as the azimuthal angle of the 

observed location on the image capture surface. 

The radial distance r is the distance between 

the observer and the object. The radial distance is 

not actually part of the rectangular coordinate 

system or the cylindrical coordinate system about 

the z axis, but is defined here because it will be 

needed in the derivations. The r coordinate starts 

at zero at the observer’s location and increases in 

value as the object moves radially away from the 

observer. 

In summary, when specifying the location of 

the physical object in rectangular coordinates, we 

use the coordinates (x, y, z). When specifying the 

location of the physical object in cylindrical coor-

dinates about the z axis, we use the coordinates 

(ρ, φ, z). At the same time, the observed location 

of the object on the convex spherical image cap-

ture surface is specified by the angular spherical 

coordinates (θ, φ). We can derive the relationships 

between these various coordinate systems. 

Applying the laws of trigonometry to the right 

triangle formed by the x, y, and ρ axes, we find: 

 𝜌2 = 𝑥2 + 𝑦2 (1) 

 sin 𝜑 =
𝑦

𝜌
 (2) 

 cos 𝜑 =
𝑥

𝜌
 (3) 

 tan 𝜑 =
𝑦

𝑥
 (4) 

Applying the laws of trigonometry to the right 

triangle formed by the z, ρ, and r axes, we find: 

ρ 

z 
θ x 

y 

r 

φ 

Figure 3. The object coordinate system for rectangular  

coordinates and cylindrical coordinates about the z axis. 
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 𝑟2 = 𝑧2 + 𝜌2 (5) 

 sin 𝜃 =
𝜌

𝑟
 (6) 

 cos 𝜃 =
𝑧

𝑟
 (7) 

 tan 𝜃 =
𝜌

𝑧
 (8) 

Solving for the spherical image coordinates in 

terms of the rectangular object coordinates by 

combining Eqs. 1 and 8, and by rearranging Eq. 

4, we find: 

 𝜃 = tan−1 (
√𝑥2+𝑦2

𝑧
) (9) 

 𝜑 = tan−1 (
𝑦

𝑥
) (10) 

Solving for the spherical imaging coordinates in 

terms of the cylindrical object coordinates about 

the z axis by rearranging Eq. 8, we find: 

 𝜃 = tan−1 (
𝜌

𝑧
) (11) 

 𝜑 = 𝜑 (12) 

The geometry involved when projecting image 

locations onto a convex spherical image capture 

surface leads to the spherical coordinates having 

circular symmetry about the viewing axis. This 

means that an object that is held at a fixed axial 

distance ρ and a fixed distance z while being swept 

through various azimuthal angles φ will retain a 

constant polar angle θ. This can be seen in Eq. 11 

by the fact that the polar angle of the observed 

location on the image capture sphere does not 

depend on the azimuthal angle of the object’s 

physical location. 

2.3 Defining the Object Coordinates: 

Spherical Coordinates 

Alternately, we can specify the physical location 

of the object in three-dimensional space using 

spherical coordinates. When using a spherical 

object coordinate system and a spherical image 

coordinate system, there is symmetry such that 

the polar angles for both coordinate systems are 

the same and also the azimuthal angles for both 

coordinate systems are the same. The spherical 

object coordinates are shown in Fig. 4. They are 

defined as follows. 

The radial distance r is the distance between 

the observer and the object, which was defined 

previously. 

The polar angle θ is the angle of the object’s 

physical location relative to the viewing axis. 

The azimuthal angle φ is the angle between the 

x axis and the line connecting the object location 

and the viewing axis.  

θ x 

φ 

r 
z 

y 

Figure 4. The object coordinate system for spherical coordinates. 
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For completeness, we write down in Eqs. 13 

and 14 the trivial relations between the angular 

spherical object coordinates and the correspond-

ing angular spherical image coordinates. 

Note that the angles θ and φ must be measured 

in radians because they will be needed in the arc 

length equations. Also note that the human visual 

system is such that it cannot directly see the radial 

distance. As such, two objects that have the same 

polar angle and the same azimuthal angle but are 

at different radial distances from the observer will 

have the same location on the image capture sur-

face and will therefore appear at the same location 

in the observed image. This can be seen by the 

fact that Eqs. 13 and 14 do not depend on r. 

 𝜃 = 𝜃 (13) 

 𝜑 = 𝜑 (14) 

2.4 Defining the Object Coordinates: 

Cylindrical Coordinates About the y Axis 

The last commonly used object coordinate sys-

tem is cylindrical coordinates about the y axis. 

This coordinate system can be pictured as being 

defined by the cylindrical surface containing the 

object’s location, that is centered on the observer, 

and that has its axis running parallel to the y axis. 

These object location coordinates are shown in 

Fig. 5. They are defined as follows. 

The angle α is the horizontal angle between the 

viewing axis and the l line. The l line is the line 

connecting the observer and the point on the 

cylindrical surface containing the object’s location 

that has the same x coordinate as the object’s 

location but is parallel to the x-z plane. 

The vertical y coordinate is the same thing as 

the y coordinate of the rectangular coordinate 

system, which was defined previously. 

The coordinate l is the direct distance between 

the observer and the cylindrical coordinate object 

surface. In other words, l is the distance between 

the observer and the point (x, 0, z) if the object is 

located at (x, y, z). Or, equivalently, it is the dis-

tance between (0, y, 0) and the object’s location at 

(x, y, z). 

Applying the laws of trigonometry to the right 

triangle formed by the x, l, and z axes we find: 

 𝑙2 = 𝑥2 + 𝑧2 (15) 

 sin 𝛼 =
𝑥

𝑙
 (16) 

 cos 𝛼 =
𝑧

𝑙
 (17) 

 tan 𝛼 =
𝑥

𝑧
 (18) 

Also, applying the Pythagorean theorem to the 

right triangle formed by the y, l, and r axes, we 

find: 

 𝑟2 = 𝑙2 + 𝑦2 (19) 

To solve for the spherical image coordinates in 

terms of the cylindrical object coordinates about 

the y axis, we insert Eqs. 17 and 19 into Eq. 7, as 

well as insert Eq. 16 into Eq. 10, to find: 

 𝜃 = cos−1 (
𝑙 cos 𝛼

√𝑙2+𝑦2
) (20) 

 𝜑 = tan−1 (
𝑦

𝑙 sin 𝛼
) (21) 

Note that Fig. 5 makes clear that the angle α 

equals the angle θ on the x axis (when y = 0), as 

can be verified by inserting y = 0 into Eq. 20.  
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y 

α 

l 

x 

z 

Figure 5. The object coordinate system for cylindrical 

coordinates about the y axis. 
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Chapter 3 
Plotting the Observed Location as a 

Function of the Object’s Physical Location 

To get an intuitive sense for the meaning of the 

equations shown in Chapter 2, which relate the 

object coordinates to the image coordinates using 

the various image coordinate systems, and also to 

help us understand how depth information can 

be extracted from simple two-dimensional retina-

captured images, let us plot these equations. To 

focus on the basic aspects at work, let us plot the 

values of the image coordinates as the object is 

moved solely along one of the object coordinate 

directions. Note that in all of the plots below and 

throughout this book, all distances and lengths 

are presented in meters. 

In addition to determining the observed loca-

tion of the physical object, as observed in the 

captured image, Eqs. 9-10, 11-12, 13- 14, and 20-

21 also determine the observed distance between 

two physical objects and the observed speed of 

objects, because these both depend trivially on 

positions. By analyzing these parameters, we can 

show how depth perception information arises 

from the relations between the observed position, 

speed, and distances and the true position, speed, 

and distances. 

3.1 Plotting for Rectangular Coordinates and 

Cylindrical Coordinates About the z Axis 

Fig. 6 shows what it means to be plotting the 

observed polar angle θ as the object moves so that 

it’s ρ coordinate increases steadily, with every-

thing else held constant. This is equivalent to an 

object moving directly away from the viewing 

axis. Fig. 7 shows the resulting plot, showing θ as 

a function of ρ for various fixed z values, which is 

the plot of Eq. 11. As expected, the farther away 

the object gets from the viewing axis, the larger 

the polar angle at which it appears. However, the 

correspondence is clearly non-linear. Because of 

the non-linear relationship, an object at a fixed z 

that moves with increasing ρ will eventually be 

visually located in the far peripheral vision and 

will appear to be moving very slowly. 

ρ 

θ 

z 

Figure 6. Plotting θ as ρ increases. 
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This effect depends on z. For objects at very 

large z values, the object has to move a very large 

distance ρ away from the viewing axis in order to 

end up in the observed state of nearly motionless 

in the far peripheral vision. In contrast, objects 

with increasing distance ρ that are at extremely 

small z values (i.e. very close to the observer when 

at ρ = 0) will almost always be in the observed 

state of nearly motionless in far peripheral vision. 

In the limit that a moving object is infinitely far 

away from the viewing axis (ρ → ∞) at a fixed z, 

the object will appear to be perfectly motionless 

at the polar angle of θ = 90°. This means that a 

truck that travels at a constant velocity directly 

eastward across your field of view as you stare 

continuously northward, and that barely misses 

you as it passes (so that it's z value is very small), 

will appear to be moving slowly for a long time, 

will then suddenly appear to be moving very 

quickly as it zooms past you, and then will appear 

to be moving slowly again for a long time. 

The dependence on z shown in Fig. 7 means 

that for a collection of objects that are dispersed 

uniformly over an x-y object plane that has low z 

value, most of the objects will appear at large 

polar angles, i.e. in the peripheral vision. 
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Figure 7. Observed polar angle θ as a function of the object's coordinate ρ.
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Figure 8. Observed polar angle θ as a function of ρ for objects in central vision.
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For instance, for z = 1.0 m, which is about the 

distance between a desktop computer screen and 

the eye of a person who is sitting at the desk while 

looking at the screen, all objects on the screen 

that are more than ρ = 1.7 cm away from the 

viewing axis will be outside of foveal vision and 

all objects that are more than ρ = 16 cm away 

from the viewing axis will be outside of central 

vision. For this reason, a person must constantly 

shift his gaze to clearly see small objects or words 

spread out all over the computer screen. 

As another example, if you are staring directly 

at a large fence and you are only a few meters 

away from the fence, then most of the fence will 

be in your far peripheral vision. 

For object planes very far away from the 

observer, a wide expanse of objects in that plane 

will be in central vision. Using the limit for central 

vision as θ = 9.0°, and inverting Eq. 11 in order 

to apply it to this angle, we find that ρ = 0.16z. 

This means that for each additional 10 meters that 

the object plane becomes farther away from the 

observer, an additional 1.6 meters of axial dis-

tance enters central vision. 

Fig. 8 shows the same information as in Fig. 7, 

but zoomed in so that now only the angles that  

correspond to central vision are presented. As 

this figure shows, the parts of the curves that lie 

within central vision are always extremely close to 

being linear. This means that moving objects that 

stay within central vision while moving in the ρ 

direction at a true speed that is constant will 

visually appear to be moving at a constant speed 

(assuming that the eye’s gaze remains fixed). In 

other words, the observed speed will behave like 

the object’s true speed. 

Because humans devote so much of their 

attention to the central region of vision, the case 

of the observed motion matching the true motion 

could be thought of as the normal state of affairs, 

while the non-linearities that are observed in the 

peripheral vision may be thought of as distortions 

which the brain can ignore or correct for. 

Fig. 9 shows what it means to be plotting the 

observed polar angle θ as the object’s z coordinate 

is increased, but everything else is held constant. 

This is equivalent to an object that is offset from 

the viewing axis moving in the z direction. Fig. 10 

shows the resulting plot, showing θ as a function 

of z for various fixed ρ values. This figure is still 

plotting Eq. 11, but is varying z instead of ρ. This 

figure shows that the farther away that an object 

gets in the z direction from the observer, the 

closer that the object will appear to the θ = 0° 

point, which we will call the central horizon point. 

To be clear, the central horizon point is the point 

where the viewing axis intercepts the spherical 

image capture surface and is the point where 

human vision sees with the highest resolution 

(under normal lighting conditions). In art, this 

point is often called the central vanishing point. 

In the limit that the object is infinitely far away 

in the z direction, it is observed to be exactly at 

the central horizon point (i.e. at θ = 0°) for any 

finite ρ value. This is called the horizon perspec-

tive effect. In everyday language, we say that as an 

object moves farther away from you (in the z 

direction), the closer that it visually appears to 

move toward the central horizon point. Note that 

in everyday life, the word horizon is usually meant 

to refer to the horizontal line formed where the 

ρ 

 
z 

θ 

Figure 9. Plotting θ as z increases. 
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distant sky meets the distant ground. However, 

this is an artifact of earthlings living on an approx-

imately flat, infinite ground plane. In reality, the 

perspective horizon is the single central point at 

θ = 0°. This effect also leads to the fact that all 

parallel, straight lines that directly extend away 

from the observer in the z direction appear to 

converge at the central horizon point. That’s why 

this point is called the central vanishing point in 

art and design. 

Fig. 10 shows that an object at a fixed ρ value 

that is traveling away from the observer in the z 

direction at a constant true speed will appear to 

initially be moving quickly toward the central 

horizon point and then later appear to be moving 

more slowly toward the central horizon point. 

Furthermore, Fig. 10 shows that the larger the 

value of ρ, the more gradual is this transition from 

moving quickly toward the central horizon point 

to then moving slowly toward the central horizon 

point.  

Note that a plot of the polar angle θ of the 

observed location on the image capture sphere as 

a function of the azimuthal angle φ of the object’s 

physical location is not shown because θ is con-

stant as φ is varied. This can be seen from the fact 

that Eq. 11 does not depend on φ. 

Also note that plots of the observed azimuthal 

angle φ as a function of the object’s z and ρ coor-

dinates are not shown because φ is constant as the 

object’s z and ρ coordinates are varied. This can 

be seen from the fact that Eq. 12 does not depend 

on z or ρ. Lastly, a plot of the observed azimuthal 

angle φ as a function of the object location’s true 

azimuthal angle φ is not shown because they are 

the same thing, as shown in Eq. 12. 

Fig. 11 shows what it means to be plotting the 

observed polar angle θ as the object’s x coordinate 

increases, but everything else is held constant. 

Fig. 12 shows what it means to be plotting the 

observed polar angle θ as the object’s y coordinate 

increases, but everything else is held constant. 

The situation shown in Fig. 11 is equivalent to an 

object moving horizontally in a straight line 

across the observer’s field of view, but typically 

not at the horizon level. This would be like a low-

flying airplane traveling continuously eastward 

across your field of view while you look contin-

uously north at the horizon. 

Fig. 13 shows the resulting plot, showing θ as 

a function of x for various fixed y values when the 

object is at z = 4 m, which is plotting Eq. 9. There 

is symmetry such that the curve for the y = 2 m 

situation is the exactly the same as the curve for 
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Figure 10. Observed polar angle θ as a function of the object's coordinate z.
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the y = -2 m situation. The same is true of all 

other values of y.  

Fig. 13 shows that an object traveling in the x 

direction with non-zero y will appear to momen-

tarily move close to the central horizon point as 

it passes, but never reaches the central horizon 

point. The higher the value of the object’s y coor-

dinate, the less it approaches the central horizon 

point as it passes by. 

Figs. 14 and 15 show the same type of plot as 

Fig. 13, but now with z = 16 m and z = 64 m, 

respectively. As these figures show, increasing z 

causes an object traveling in the x direction at a 

non-zero y to spend longer at smaller polar angles 

and to approach closer to the central horizon 

point when passing. 

Fig. 16 shows the exact same information as is 

shown in Fig. 15, but zoomed into the region of 

central vision. This figure shows that for relatively 

large z values and very small y values, the depen-

dence of polar angle θ on the object’s physical x 

coordinate is approximately linear. 

Instead of plotting the observed polar angle θ 

as a function of the object coordinate x, we can 

plot it as a function of the object coordinate y. 

However, because of the symmetry of the 

viewing geometry, such plots would look exactly 

the same as the plots in Figs. 13 to 16. 

In other words, the situations shown in Figs. 

11 and 12 both give rise to the exact same plots 

(after appropriately relabeling the axes). This is 

evident from the symmetry of Eq. 9. This makes 

sense in view of the fact that what we decide to 

call the x axis vs the y axis is physically arbitrary. 

x 

y 
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θ 

Figure 12. Plotting θ as y increases. 
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Figure 11. Plotting θ as x increases. 
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Figure 13. Observed polar angle θ as a function of x, at z = 4 m.

y = 0 m

y = ±1 m

y = ±2 m

y = ±4 m

y = ±8 m

y = ±16 m



Chapter 3. Plotting the Observed Location as a Function of the Object’s Physical Location 

18 

       

0

10

20

30

40

50

60

70

80

90

-50 -40 -30 -20 -10 0 10 20 30 40 50

θ
(°

)

x (m)

Figure 14. Observed polar angle θ as a function of x, at z = 16 m.
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Figure 15. Observed polar angle θ as a function of x, at z = 64 m.
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Figure 16. Observed polar angle θ vs x, at z = 64 m, for central vision.
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 In fact, an object traveling along any straight 

line in an x-y object plane will give rise to the same 

types of curves as in Figs. 13 to 16 (as long as we 

interpret the direction that the object is traveling 

as the x direction and the direction that is perpen-

dicular to the x direction and is in the object plane 

as the y direction). 

So far we have only investigated the observed 

polar angle as a function of rectangular coordi-

nates. Let us now investigate the observed azimu-

thal angle. 

Fig. 17 shows what it means to be plotting the 

observed azimuthal angle φ as the object’s x coor-

dinate increases, but while everything else is held 

constant. Fig. 18 shows what it means to be plot-

ting the observed azimuthal angle φ as the object’s 

y coordinate increases, but while everything else 

is held constant. Fig. 19 shows the resulting plot 

of the situation in Fig. 17, which is the result of 

plotting Eq. 10.  

Fig. 19 shows that an object traveling in the x 

direction with non-zero y will start at φ = 180° 

when it is infinitely far away in the -x direction, 

meaning that it is exactly to the left of the central 

horizon point. It will then sweep through the 

azimuthal angles from 180° to 0° as it passes the 

observer, and then will end up at 0° when it is 

infinitely far away in the +x direction, meaning 

that it is exactly to the right of the central horizon 

point. Fig. 19 also shows that the greater the value 

of the object coordinate y, the more gradually the 

object sweeps through all of these angles. 
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Figure 18. Plotting φ as y increases. 
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Figure 17. Plotting φ as x increases. 
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Figure 19. Observed azimuthal angle φ as a function of x.
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Note that due to symmetry, an object traveling 

in the y direction at a fixed x value will have the 

exact same plots as an object traveling in the x 

direction at a fixed y value (aside from an overall 

angle offset and vertical axis flip because of where 

φ = 0 is defined). In other words, the situations 

shown in Figs. 17 and 18 ultimately both have the 

same types of curves. 

Fig. 19 only shows curves for positive y values. 

Due to symmetry, the curves for negative y values 

would have the same trends as in Fig. 19 but 

would be inverted vertically in the plot because 

each curve would sweep from -180° to -90° to 0° 

instead of sweeping from +180° to +90° to 0°. 

A plot of the observed azimuthal angle φ as a 

function of the object coordinate z is not shown 

because φ is constant as the object’s z coordinate 

changes. This is shown by the fact that Eq. 10 is 

independent of z. We already encountered this 

fact when discussing the coordinate system of 

cylindrical coordinates about the z axis because 

rectangular coordinates and cylindrical coordi-

nates about the z axis both include the same z 

coordinate. 

3.2 Plotting for Spherical Coordinates 

The observed polar angle θ does not change as 

the object location’s spherical coordinates r and φ 

are changed. Also, the observed azimuthal angle 

φ does not change as the object location’s spheri-

cal coordinates r and θ are changed. These facts 

can be seen in Eqs. 13 and 14. For these reasons, 

none of these situations have meaningful plots 

and therefore none of these situations are plotted.  

Furthermore, the observed polar angle θ of the 

object’s location on the image capture sphere and 

the polar angle θ of the object’s true location are 

exactly the same, as shown in Eq. 13. Similarly, 

the observed azimuthal angle φ and the object’s 

true azimuthal angle φ are exactly the same, as 

shown in Eq. 14. Therefore, these two situations 

have trivial plots and are therefore not plotted. 

These results arise from the fact that the object’s 

true location coordinate system is spherical and 

the object’s observed location coordinate system 

is spherical, and both systems are centered on the 

observer and aligned with each other. 

This means that any time an object moves at a 

true constant speed along a curved path that is 

part of a sphere centered on the observer, the 

object will also visually appear to travel at a con-

stant speed across the observer’s field of view. 

Additionally, this means that if an object is 

moving in the radial direction (i.e. directly toward 

or away from the observer in any r direction), its 

observed location will remain constant so that its 

location will visually appear to be motionless. (Its 

observed size, however, will change.) 

3.3 Plotting for Cylindrical Coordinates 

About the y Axis 

Fig. 20 shows what it means to be plotting the 

observed polar angle θ as the object’s α coor-

dinate increases, for various y values, while l is 

held fixed. This is equivalent to an object moving 

to the right while staying on a cylindrical surface 

that has its axis vertical and running through the 

observer’s location. 

Fig. 21 shows the resulting plot, plotting θ as 

a function of α, for various y values when l is held 

fixed at l = 4 m, which is the plot of Eq. 20. The 

larger the α angle is, the more that the object ends   

α 

l 

θ 

Figure 20. Plotting θ as α increases. 
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Figure 21. Oberved polar angle θ as a function of α when l = 4 m.
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Figure 22. Observed polar angle θ as a function of α when l = 16 m.
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Figure 23. Observed polar angle θ as a function of α when l = 64 m.
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up in the far peripheral vision. Furthermore, an 

object with a large y value that is traveling to the 

right along the cylindrical surface is farther from 

the central horizon point as it passes. An object 

moving in the α direction, starting at α = -90°, 

starts in far peripheral vision to the left of the 

central horizon point, moves close to the central 

horizon point as it zooms by, and then ends up in 

far peripheral vision to the right of the central 

horizon point. For an object location with a y 

value that is larger than about a quarter of its l 

value, it remains in far peripheral vision the entire 

time as it moves in the α direction. 

Figs. 22 and 23 show the same type of plot as 

Fig. 21, but now with l = 16 m and l = 64 m, 

respectively. As these figures show, increasing l 

causes an object that is traveling rightwards along 

a cylindrical surface about the y axis to approach 

closer to the central horizon point. For an object 

with an l coordinate value that is much larger than 

its y value, and it moves rightwards across the 

cylinder, the curve would be approximately linear, 

as shown in Fig. 23. This means that such an 

object would visually appear to be moving at a 

constant speed. 

Fig. 24 shows what it means to be plotting the 

observed polar angle θ as the object’s y coordinate 

increases in cylindrical coordinates about the y 

axis, but while everything else is held constant. 

This is equivalent to an object that is laterally off-

set moving in the y direction, for various lateral 

offsets.  

Fig. 25 shows the resulting plot, where θ is a 

function of y for various α values when l = 4 m, 

which is plotting Eq. 20. The result is similar to 

the result in Fig. 13, because the geometries are 

similar. 

Figs. 26 and 27 show the same situation as in 

Fig. 25 but with l = 16 m and l = 64 m, respect-

tively. As is evident in these figures, increasing l 

causes the curves to flatten so that the changes in 

polar angle are more gradual and are overall 

lower, meaning that the object spends less time in 

far peripheral vision. 
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Figure 24. Plotting θ as y increases. 
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Figure 25. Observed polar angle θ as a function of y when l = 4 m.
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Fig. 28 shows what it means to be plotting the 

polar angle θ as the object’s l coordinate increases, 

while everything else is held constant. This is 

equivalent to an object moving horizontally away 

from the observer so that l increases, but such 

that α and y are constant. 

Fig. 30 shows the resulting plot, showing θ as 

a function of l for various fixed α values while y 

is fixed at y = 4 m, which is plotting Eq. 20. As l 

increases without α increasing, the object is 

observed to move from far peripheral vision 

toward the central horizon point. This is again the 

perspective horizon effect. 

However, the observed polar angle levels off 

at a non-zero value as l increases toward infinity 

and never actually reaches the central horizon 

point (except for the trivial case of α = 0). This is 

because an object traveling in the +l direction is 

physically increasing its distance from the viewing 

axis. As l increases to large values, the object loca-

tion’s y value becomes negligible in comparison, 

so that the object is eventually effectively moving 

in the r direction at a fixed θ value.  

Fig. 29 shows what it means to be plotting the 

observed azimuthal angle φ as the object’s y coor-

dinate increases, but while everything else is held 
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Figure 26. Observed polar angle θ as a function of y when l = 16 m.
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Figure 27. Observed polar angle θ as a function of y when l = 64 m.
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constant. This is equivalent to an object that is lat-

erally offset from the viewing axis moving in the 

y direction, for various lateral locations on the 

cylindrical surface. Fig. 31 shows the resulting 

plot, showing φ as a function of y for various 

fixed α values and at l = 4 m, which is plotting 

Eq. 21. As we can clearly see, Fig. 31 shows that 

an object at a positive, fixed α angle value that is 
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Figure 28. Plotting θ as l increases. 
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Figure 29. Plotting φ as y increases. 
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Figure 30. Polar angle θ as a function of l when y = 4 m.
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traveling in the y direction will start at φ = -90° 

when it is infinitely far away in the -y direction, 

meaning that it is situated downward, will then 

sweep through the azimuthal angles from -90° to 

+90° as it travels in the y direction and passes the 

observer, and then will end up at +90° when it is 

infinitely far away in the +y direction, meaning 

that it is situated upward. Fig. 31 also shows that 

the farther away that the object is from the central 

horizon point in the α direction, the more 

gradually it sweeps through all of these azimuthal 

angles as it travels in the y direction. 

Fig. 32 shows what it means to be plotting the 

observed azimuthal angle φ as the object’s l 

coordinate increases, but while everything else is 

held constant. This is equivalent to an object 

moving horizontally away from the observer so 

that l increases, but such that α and y are constant.  

Fig. 33 shows the resulting plot, showing φ as 

a function of l for various fixed α values when y 

is held fixed at y = 4 m, which is again plotting 

Eq. 21. This figure shows that as l increases, the 

fixed y value becomes increasingly negligible, so 

that the object appears to be approaching the +x 

axis, where the azimuthal angle is zero. 

If the object had a negative value for its α angle 

and l increased, then it would simply appear to be 

approaching the -x axis, where the azimuthal 

angle is 180° (which would correspond to a plot 

that would look like Fig. 33, but flipped top-to-

bottom and with the vertical axis of the plot 

labeled running from 90° to 180° instead of from 

0° to 90°). This is a type of horizon perspective 

effect but involving the horizon line instead of 

the central horizon point. 

For instance, an airplane that flies away from 

the observer in the l direction (so that it steadily 

increases its physical horizontal distance from the 

viewing axis) but maintains a constant altitude 

above the level ground will appear to be gradually 

moving toward the horizon line. In the limit that 

the airplane is very far away in the l direction, it 

will appear to be at the horizon line.  

Fig. 34 shows what it means to be plotting the 
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Figure 32. Plotting φ as l increases. 
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observed azimuthal angle φ as the object’s α coor-

dinate increases, but while everything else is still 

held constant. This is equivalent to an object 

moving horizontally along the surface of the 

cylinder at a certain y offset. 

Fig. 35 shows the resulting plot, showing φ as 

a function of α for various fixed y values when l 

is held fixed at l = 16 m, which is again plotting 

Eq. 21. This figure shows that as α increases, the 

object appears to approach the +x axis, where φ 

is zero. However, because of the angular nature 

of α, the object levels off at a particular non-zero 

φ value by the time it ends up in far peripheral 

vision. Note that for negative y values, the curves 

would be the same as in Fig. 35, except inverted 

vertically because of the way that φ is defined.
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Figure 34. Plotting φ as α increases. 
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Figure 35. Observed azimuthal angle φ as a function of α when l = 16 m.
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Chapter 4 
Observed Object Length 
as a Function of Position 

As demonstrated in the previous chapter, the 

geometry of human monocular vision determines 

the visually perceived positions of objects. This 

geometry also determines the visually perceived 

size of objects. In this chapter, we will investigate 

how this geometry determines the visually per-

ceived length of objects and then, in the next 

chapter, how it determines the visually perceived 

area of objects. 

The visually perceived length of an object 

depends on the object’s true length, which is ob-

viously different from one object to the next. 

Therefore, we will not focus here on the absolute 

visually perceived length, but on the object’s 

relative visually perceived length. We thus need to 

determine the ratio of an object’s observed length 

to its true length, which we can call the relative 

observed length or the length magnification. 

Because we are dealing with images formed on 

the human retina, without the aid of any micro-

scopes, telescopes, mirrors, or additional lenses, 

the image on the retina will always be smaller than 

the corresponding physical object. Therefore, the 

magnification values will always have an absolute 

value that is less than one. 

Also, even though the image on the retina is 

inverted top-to-bottom and left-to-right relative 

to the physical object, and therefore the optical 

magnification has a negative value, the human 

brain reverses these inversions so that the images 

are experienced as non-inverted. The net effect is 

that the final images experienced by the brain are 

oriented in the same way as the physical object, 

so that the overall magnification values must be 

positive. Therefore, the inverted images formed 

on the concave spherical retina are equivalent to 

non-inverted direct projections of the object onto 

a corresponding convex spherical surface, as I 

have already mentioned. 

A physical object that is large will have one 

end at a certain observed location with a certain 

magnification that corresponds to that location, 

and the other end at a different observed location 

with a different magnification that corresponds to 

that location. This means that the total observed 

length of a large physical object is found by calcu-

lating the integral of the magnification from one 

end of the object to the other. 

Although evaluating such an integral can be 

done, it is complicated and object-dependent. 

However, to understand the geometrical effects 

themselves, we need only to analyze the infinites-

imal length elements, such as dx, dy, or dρ. Any 

real object that is sufficiently small will act to an 
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excellent approximation as an infinitesimal length 

element. With this in mind, we will investigate the 

point-wise length magnification, which equals the 

ratio of the visually perceived infinitesimal length 

of an object to the corresponding true infinites-

imal length. The point-wise length magnification 

therefore takes the form of a derivative.  

Due to the geometry of human monocular 

vision, the visually perceived length of an object, 

and therefore the length magnification, depends 

directly on the true location of the object in three-

dimensional space. Each magnification parameter 

will therefore be a function of the object’s true 

location coordinates. 

In order to investigate the visually perceived 

length effects separately along each dimension, 

we assume that the object has length only, which 

extends along the one dimension of interest, and 

has no width or depth. (In a subsequent chapter 

we will consider objects that extend in more than 

one dimension.) For example, in order to investi-

gate the observed length effects for an object that 

stretches out in the x direction, we use an object 

that is point-like in the y and z dimensions and is 

extended a small length dx in the x dimension.  

When a length magnification parameter is the 

ratio of an angular observed coordinate to a dis-

tance coordinate, the units will mismatch, thereby 

reducing the meaning of that particular magnifi-

cation parameter. To avoid this, we replace each 

infinitesimal angle parameter with its correspond-

ing infinitesimal arc-length parameter. Using the 

standard arc-length formula from geometry, we 

find that these arc lengths are: 

  𝑑𝑠𝜃
′ = 𝑎𝑑𝜃 (22)  

 𝑑𝑠𝜃 = 𝑟𝑑𝜃 (23) 

 𝑑𝑠𝜑
′ = 𝑎 sin 𝜃 𝑑𝜑 (24) 

 𝑑𝑠𝜑 = 𝑟 sin 𝜃 𝑑𝜑 (25) 

 𝑑𝑠𝛼 = 𝑙𝑑𝛼 (26) 

In Eqs. 22 and 23, sθʹ is the arc length that is 

subtending the polar angle θ and is sitting on the 

image capture sphere with the radius a, while sθ is 

the arc length that is subtending the same polar 

angle but that is sitting on the object location 

sphere with the radius r. Whereas the polar angle 

of the object’s physical location is the same as the 

polar angle of the object’s observed location, the 

corresponding arc lengths are not the same. We 

therefore use the prime symbol to differentiate 

between the two. 

In Eqs. 24 and 25, sφʹ is the arc length that is 

subtending the azimuthal angle φ and is sitting on 

the image capture sphere with the radius a, while 

sφ is the arc length that is subtending the same 

azimuthal angle but that is sitting on the object 

location sphere with the radius r. In Eq. 26, sα is 

the arc length that is subtending the angle α and 

is sitting on the object location cylinder. 

We could choose to use the effective radius of 

the human retina as the value of the image cap-

ture sphere’s radius a. However, the value for a 

only determines the overall scale of the observed 

lengths and not the parameter trends or their rela-

tionships. Thus, the actual value of a is irrelevant 

when analyzing the geometric effects of human 

monocular vision. Therefore, in order to simplify 

the equations, let’s choose a value of a = 1 meter.  

The point-wise length magnification is the 

ratio of the infinitesimal observed length to the 

corresponding infinitesimal true length, where we 

first assume that the true length extends in the 

direction of one of the basic coordinate dimen-

sions. Each length magnification parameter Ma/b 

therefore follows this pattern of notation: 

 𝑀𝑠𝜃
′ /𝑥 =

𝑑𝑠𝜃
′

𝑑𝑥
=

𝑎𝑑𝜃

𝑑𝑥
=

𝑑𝜃

𝑑𝑥
  when a = 1 (27) 

Ultimately what matters is the total observed 

relative length, and not just one component of the 

observed relative length, because the eye sees the 

whole object. Therefore, we will need to combine 
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the components of the observed relative length 

to find the total observed relative length using an 

equation of the form: 

 𝑀tot./𝑥 = √𝑀
𝑠𝜃

′ /𝑥
2 + 𝑀

𝑠𝜑
′ /𝑥

2  (28) 

In the derivations below, the resulting equations 

are presented both as a function of the object’s 

original coordinates and of spherical coordinates. 

4.1 Observed Object Length in Rectangular 

Coordinates/Cylindrical Coordinates About 

the z Axis 

Let us start by examining objects that extend in 

the various dimensions of cylindrical coordinates 

about the z axis. To determine the observed 

length’s sθʹ component for an object extended in 

the ρ direction, we take the derivative of Eq. 11 

with respect to ρ (remembering to set a = 1 for 

simplicity): 

 𝑀𝑠𝜃
′ /𝜌 =

𝑑𝑠𝜃
′

𝑑𝜌
=

𝑑𝜃

𝑑𝜌
=

𝑑

𝑑𝜌
(tan−1 (

𝜌

𝑧
)) (29) 

 𝑀𝑠𝜃
′ /𝜌 =

𝑧

𝑧2+𝜌2  or (30a) 

 𝑀𝑠𝜃
′ /𝜌 =

1

𝑟
cos 𝜃 (30b) 

Because Eq. 12 does not depend at all on ρ, any 

thin object that is extended only in the ρ direction 

will be observed to have zero width in the sφʹ 

direction. In other words: 

  𝑀𝑠𝜑
′ /𝜌 = 0 (31) 

The total observed relative length for an object 

extended in the ρ dimension is the square root of 

the sum of its components squared: 

 𝑀tot./𝜌 = √𝑀
𝑠𝜃

′ /𝜌
2 + 𝑀

𝑠𝜑
′ /𝜌

2  (32) 

 𝑀tot./𝜌 =
𝑧

𝑧2+𝜌2  or (33a) 

 𝑀tot./𝜌 =
1

𝑟
cos 𝜃 (33b) 

Let us now look at an object extended in the z 

direction. In order to determine the observed 

length’s sθʹ component for an object extended in 

the z direction, we take the derivative of Eq. 11 

with respect to z: 

 𝑀𝑠𝜃
′ /𝑧 =

𝑑𝑠𝜃
′

𝑑𝑧
=

𝑑𝜃

𝑑𝑧
=

𝑑

𝑑𝑧
(tan−1 (

𝜌

𝑧
)) (34) 

 𝑀𝑠𝜃
′ /𝑧 = −

𝜌

𝜌2+𝑧2
  or (35a) 

 𝑀𝑠𝜃
′ /𝑧 = −

1

𝑟
sin 𝜃 (35b) 

Note that the negative sign in Eq. 35 means that 

an object at a certain position offset from the 

viewing axis that extends in the positive z direc-

tion away from the observer will be observed to 

be extending in the negative sθʹ direction, i.e. 

toward the central horizon point. This is an im-

portant part of the perspective horizon effect. 

For instance, if a painted stick at an arbitrary 

location has its red end at a certain z value and its 

blue end at a larger z value, then its blue end will 

appear to be closer to the central horizon point. 

The negative signs in Eq. 35 are also important in 

ensuring the accuracy of subsequent derivations. 

Because Eq. 12 does not depend at all on z, 

any object that is extended only in the z direction 

will be observed to have zero width in the sφʹ 

direction. In other words: 

 𝑀𝑠𝜑
′ /𝑧 = 0 (36) 

The total observed relative length for an object 

that is extended in the z direction is therefore: 

 𝑀tot./𝑧 = √𝑀
𝑠𝜃

′ /𝑧
2 + 𝑀

𝑠𝜑
′ /𝑧

2  (37) 

 𝑀tot./𝑧 =
𝜌

𝜌2+𝑧2
  or (38a) 

 𝑀tot./𝑧 =
1

𝑟
sin 𝜃 (38b) 

Let us now look at an object extended in the sφ 

direction. Because Eq. 11 does not depend at all 

on φ, any object that is extended only in the sφ 
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direction will be observed to have zero width in 

the sθʹ direction. In other words: 

 𝑀𝑠𝜃
′ /𝑠𝜑

= 0 (39) 

In order to determine the observed length’s sφʹ 

component for an object extended in the sφ 

direction, we take the derivative of Eq. 12 with 

respect to sφ to find: 

 𝑀𝑠𝜑
′ /𝑠𝜑

=
𝑑𝑠𝜑

′

𝑑𝑠𝜑
=

𝑎 sin 𝜃𝑑𝜑

𝑟 sin 𝜃𝑑𝜑
=

1

𝑟
 (40) 

 𝑀𝑠𝜑
′ /𝑠𝜑

=
1

√𝜌2+𝑧2
  or (41a) 

 𝑀𝑠𝜑
′ /𝑠𝜑

=
1

𝑟
 (41b) 

The total observed relative length for an object 

that is extended in the sφ direction is therefore: 

 𝑀tot./𝑠𝜑
= √𝑀

𝑠𝜃
′ /𝑠𝜑

2 + 𝑀
𝑠𝜑

′ /𝑠𝜑

2  (42) 

 𝑀tot./𝑠𝜑
=

1

√𝜌2+𝑧2
  or (43a) 

 𝑀tot./𝑠𝜑
=

1

𝑟
 (43b) 

Let us now look at the objects extended in the 

various dimensions of rectangular coordinates. In 

order to determine the relative observed length’s 

sθʹ component for an object that is extended in 

the x direction, as a function of position, we take 

the derivative with respect to x of Eq. 9 to find: 

  𝑀𝑠𝜃
′ /𝑥 =

𝑑𝑠𝜃
′

𝑑𝑥
=

𝑑𝜃

𝑑𝑥
=

𝑑

𝑑𝑥
(tan−1 (

√𝑥2+𝑦2

𝑧
)) (44)   

 𝑀𝑠𝜃
′ /𝑥 =

𝑥𝑧

(𝑥2+𝑦2+𝑧2)√𝑥2+𝑦2
  or (45a) 

 𝑀𝑠𝜃
′ /𝑥 =

1

𝑟
cos 𝜃 cos 𝜑 (45b) 

In order to find the relative observed length’s sφʹ 

component for an object that is extended in the x 

direction, as a function of position, we take the 

derivative with respect to x of Eq. 10 to find: 

 𝑀𝑠𝜑
′ /𝑥 =

𝑑𝑠𝜑
′

𝑑𝑥
=

𝑎 sin 𝜃𝑑𝜑

𝑑𝑥
= sin 𝜃

𝑑𝜑

𝑑𝑥
 

 𝑀𝑠𝜑
′ /𝑥 = sin 𝜃

𝑑

𝑑𝑥
(tan−1 (

𝑦

𝑥
)) (46)  

 𝑀𝑠𝜑
′ /𝑥 = −

𝑦

√𝑥2+𝑦2+𝑧2√𝑥2+𝑦2
  or (47a) 

 𝑀𝑠𝜑
′ /𝑥 = −

1

𝑟
sin 𝜑 (47b) 

The total observed relative length for an object 

that is extended in the x direction is therefore: 

 𝑀tot./𝑥 = √𝑀
𝑠𝜃

′ /𝑥
2 + 𝑀

𝑠𝜑
′ /𝑥

2  (48) 

  𝑀tot./𝑥 =
√𝑦2+𝑧2

𝑥2+𝑦2+𝑧2
  or (49a) 

  𝑀tot./𝑥 =
1

𝑟
√1 − cos2 𝜑 sin2 𝜃 (49b) 

In order to find the relative observed length’s sθʹ 

component for an object that is extended in the y 

direction, as a function of position, we take the 

derivative with respect to y of Eq. 9 to find: 

 𝑀𝑠𝜃
′ /𝑦 =

𝑑𝑠𝜃
′

𝑑𝑦
=

𝑑𝜃

𝑑𝑦
=

𝑑

𝑑𝑦
(tan−1 (

√𝑥2+𝑦2

𝑧
)) (50)  

 𝑀𝑠𝜃
′ /𝑦 =

𝑦𝑧

(𝑥2+𝑦2+𝑧2)√𝑥2+𝑦2
  or (51a) 

 𝑀𝑠𝜃
′ /𝑦 =

1

𝑟
cos 𝜃 sin 𝜑 (51b) 

In order to find the relative observed length’s sφʹ 

component for an object that is extended in the y 

direction, as a function of position, we take the 

derivative with respect to y of Eq. 10 to find: 

 𝑀𝑠𝜑
′ /𝑦 =

𝑑𝑠𝜑
′

𝑑𝑦
=

𝑎 sin 𝜃𝑑𝜑

𝑑𝑦
= sin 𝜃

𝑑𝜑

𝑑𝑦
 

 𝑀𝑠𝜑
′ /𝑦 = sin 𝜃

𝑑

𝑑𝑦
(tan−1 (

𝑦

𝑥
)) (52) 

 𝑀𝑠𝜑
′ /𝑦 =

𝑥

√𝑥2+𝑦2+𝑧2√𝑥2+𝑦2
  or (53a) 

 𝑀𝑠𝜑
′ /𝑦 =

1

𝑟
cos 𝜑 (53b) 

The total observed relative length for an object 

that is extended in the y direction is therefore: 

 𝑀tot./𝑦 = √𝑀
𝑠𝜃

′ /𝑦
2 + 𝑀

𝑠𝜑
′ /𝑦

2  (54) 
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  𝑀tot./𝑦 =
√𝑥2+𝑧2

𝑥2+𝑦2+𝑧2  or (55a) 

 𝑀tot./𝑦 =
1

𝑟
√1 − sin2 𝜑 sin2 𝜃 (55b) 

Note that the z coordinate of the rectangular 

coordinate system is the same as the z coordinate 

of the cylindrical coordinate system about the z 

axis, and therefore the results are the same as in 

Eqs. 34 to 38. However, for completeness, and to 

present them in rectangular coordinates, we write 

them here: 

 𝑀𝑠𝜃
′ /𝑧 = −

√𝑥2+𝑦2

𝑥2+𝑦2+𝑧2
  or (56a) 

 𝑀𝑠𝜃
′ /𝑧 = −

1

𝑟
sin 𝜃 (56b) 

 𝑀𝑠𝜑
′ /𝑧 = 0 (57) 

 𝑀tot./𝑧 =
√𝑥2+𝑦2

𝑥2+𝑦2+𝑧2  or (58a) 

 𝑀tot./𝑧 =
1

𝑟
sin 𝜃 (58b) 

4.2 Observed Object Length in Spherical 

Coordinates 

In order to find the relative observed length’s sθʹ 

component for an object that is extended in the 

sθ direction, as a function of position, we take the 

derivative with respect to sθ of Eq. 13 to find: 

 𝑀𝑠𝜃
′ /𝑠𝜃

=
𝑑𝑠𝜃

′

𝑑𝑠𝜃
=

𝑎𝑑𝜃

𝑟𝑑𝜃
=

1

𝑟

𝑑𝜃

𝑑𝜃
 

 𝑀𝑠𝜃
′ /𝑠𝜃

=
1

𝑟
 (59) 

Because Eq. 14 does not depend at all on sθ, any 

thin object that is extended only in the sθ direction 

will be observed to have zero width in the sφʹ 

direction. In other words: 

 𝑀𝑠𝜑
′ /𝑠𝜃

= 0 (60) 

The total observed relative length for an object 

that is extended in the sθ direction is therefore: 

𝑀tot./𝑠𝜃
= √𝑀

𝑠𝜃
′ /𝑠𝜃

2 + 𝑀
𝑠𝜑

′ /𝑠𝜃

2  

  𝑀tot./𝑠𝜃
=

1

𝑟
 (61) 

In order to find the relative observed length’s sφʹ 

component for an object that is extended in the 

sφ direction, as a function of position, we take the 

derivative with respect to sφ of Eq. 14 to find: 

 𝑀𝑠𝜑
′ /𝑠𝜑

=
𝑑𝑠𝜑

′

𝑑𝑠𝜑
=

𝑎 sin 𝜃𝑑𝜑

𝑟 sin 𝜃𝑑𝜑
=

1

𝑟

𝑑𝜑

𝑑𝜑
 

 𝑀𝑠𝜑
′ /𝑠𝜑

=
1

𝑟
 (62) 

Because Eq. 13 does not depend at all on φ, any 

thin object that is extended only in the sφ direction 

will be observed to have zero width in the sθʹ 

direction. In other words: 

 𝑀𝑠𝜃
′ /𝑠𝜑

= 0 (63) 

The total observed relative length for an object 

that is extended in the sφ direction is therefore: 

𝑀tot./𝑠𝜑
= √𝑀

𝑠𝜃
′ /𝑠𝜑

2 + 𝑀
𝑠𝜑

′ /𝑠𝜑

2  

  𝑀tot./𝑠𝜑
=

1

𝑟
 (64) 

Because Eqs. 13 and 14 do not depend at all on r, 

any thin object that is extended only in the r 

direction will be observed to have zero width in 

the sθʹ and sφʹ directions. In other words: 

 𝑀𝑠𝜃
′ /𝑟 = 0 (65) 

 𝑀𝑠𝜑
′ /𝑟 = 0 (66) 

 𝑀tot./𝑟 = 0 (67) 

4.3 Observed Object Length in Cylindrical 

Coordinates About the y Axis 

In order to find the relative observed length’s sθʹ 

component for an object that is extended in the 

sα direction, as a function of position, we take the 

derivative with respect to sα of Eq. 20 to find: 
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 𝑀𝑠𝜃
′ /𝑠𝛼

=
𝑑𝑠𝜃

′

𝑑𝑠𝛼
=

𝑎𝑑𝜃

𝑙𝑑𝛼
=

1

𝑙

𝑑𝜃

𝑑𝛼
 

 𝑀𝑠𝜃
′ /𝑠𝛼

=
1

𝑙

𝑑

𝑑𝛼
(cos−1 (

𝑙 cos 𝛼

√𝑙2+𝑦2
)) (68) 

 𝑀𝑠𝜃
′ /𝑠𝛼

=
sin 𝛼

√𝑙2 sin2 𝛼+𝑦2
  or (69a) 

 𝑀𝑠𝜃
′ /𝑠𝛼

=
1

𝑟

cos 𝜑

√1−sin2 𝜃 sin2 𝜑
 (69b) 

In order to find the relative observed length’s sφʹ 

component for an object that is extended in the 

sα direction, as a function of position, we take the 

derivative with respect to sα of Eq. 21 to find: 

 𝑀𝑠𝜑
′ /𝑠𝛼

=
𝑑𝑠𝜑

′

𝑑𝑠𝛼
=

𝑎 sin 𝜃𝑑𝜑

𝑙𝑑𝛼
=

sin 𝜃

𝑙

𝑑𝜑

𝑑𝛼
 

 𝑀𝑠𝜑
′ /𝑠𝛼

=
sin 𝜃

𝑙

𝑑

𝑑𝛼
(tan−1 (

𝑦

𝑙 sin 𝛼
)) (70) 

 𝑀𝑠𝜑
′ /𝑠𝛼

= −
𝑦 cos 𝛼

√𝑙2+𝑦2√𝑙2 sin2 𝛼+𝑦2
  or (71a) 

 𝑀𝑠𝜑
′ /𝑠𝛼

= −
1

𝑟

cos 𝜃 sin 𝜑

√1−sin2 𝜃 sin2 𝜑
 (71b) 

The total observed relative length for an object 

that is extended in the sα direction is therefore: 

 𝑀tot./𝑠𝛼
= √𝑀

𝑠𝜃
′ /𝑠𝛼

2 + 𝑀
𝑠𝜑

′ /𝑠𝛼

2  (72) 

  𝑀tot./𝑠𝛼
=

1

√𝑙2+𝑦2
  or (73a) 

  𝑀tot./𝑠𝛼
=

1

𝑟
 (73b) 

In order to find the relative observed length’s sθʹ 

component for an object that is extended in the l 

direction, as a function of position, we take the 

derivative with respect to l of Eq. 20 to find: 

 𝑀𝑠𝜃
′ /𝑙 =

𝑑𝑠𝜃
′

𝑑𝑙
=

𝑎𝑑𝜃

𝑑𝑙
=

𝑑𝜃

𝑑𝑙
 

 𝑀𝑠𝜃
′ /𝑙 =

𝑑

𝑑𝑙
(cos−1 (

𝑙 cos 𝛼

√𝑙2+𝑦2
)) (74) 

 𝑀𝑠𝜃
′ /𝑙 = −

𝑦2 cos 𝛼

(𝑙2+𝑦2)√𝑙2 sin2 𝛼+𝑦2
  or (75a) 

 𝑀𝑠𝜃
′ /𝑙 = −

1

𝑟

cos 𝜃 sin 𝜃 sin2 𝜑

√1−sin2 𝜃 sin2 𝜑
 (75b) 

In order to find the relative observed length’s sφʹ 

component for an object that is extended in the l 

direction, as a function of position, we take the 

derivative with respect to l of Eq. 21 to find: 

 𝑀𝑠𝜑
′ /𝑙 =

𝑑𝑠𝜑
′

𝑑𝑙
=

𝑎 sin 𝜃𝑑𝜑

𝑑𝑙
= sin 𝜃

𝑑𝜑

𝑑𝑙
 

 𝑀𝑠𝜑
′ /𝑙 = sin 𝜃

𝑑

𝑑𝑙
(tan−1 (

𝑦

𝑙 sin 𝛼
)) (76) 

 𝑀𝑠𝜑
′ /𝑙 = −

𝑦 sin 𝛼

√𝑙2+𝑦2√𝑙2 sin2 𝛼+𝑦2
  or (77a) 

 𝑀𝑠𝜑
′ /𝑙 = −

1

𝑟

sin 𝜃 cos 𝜑 sin 𝜑

√1−sin2 𝜃 sin2 𝜑
 (77b) 

The total observed relative length for an object 

that is extended in the l direction is therefore: 

 𝑀tot./𝑙 = √𝑀
𝑠𝜃

′ /𝑙
2 + 𝑀

𝑠𝜑
′ /𝑙

2  (78) 

  𝑀tot./𝑙 =
|𝑦|

𝑙2+𝑦2  or (79a) 

  𝑀tot./𝑙 =
1

𝑟
sin 𝜃 |sin 𝜑| (79b) 

In order to find the relative observed length’s sθʹ 

component for an object that is extended in the y 

direction, as a function of position, we take the 

derivative with respect to y of Eq. 20 to find: 

 𝑀𝑠𝜃
′ /𝑦 =

𝑑𝑠𝜃
′

𝑑𝑦
=

𝑎𝑑𝜃

𝑑𝑦
=

𝑑𝜃

𝑑𝑦
 

 𝑀𝑠𝜃
′ /𝑦 =

𝑑

𝑑𝑦
(cos−1 (

𝑙 cos 𝛼

√𝑙2+𝑦2
)) (80) 

 𝑀𝑠𝜃
′ /𝑦 =

𝑙𝑦 cos 𝛼

(𝑙2+𝑦2)√𝑙2 sin2 𝛼+𝑦2
  or (81a) 

 𝑀𝑠𝜃
′ /𝑦 =

1

𝑟
cos 𝜃 sin 𝜑 (81b) 

In order to find the relative observed length’s sφʹ 

component for an object that is extended in the y 

direction, as a function of position, we take the 

derivative with respect to y of Eq. 21 to find: 

 𝑀𝑠𝜑
′ /𝑦 =

𝑑𝑠𝜑
′

𝑑𝑦
=

𝑎 sin 𝜃𝑑𝜑

𝑑𝑦
= sin 𝜃

𝑑𝜑

𝑑𝑦
 

 𝑀𝑠𝜑
′ /𝑦 = sin 𝜃

𝑑

𝑑𝑦
(tan−1 (

𝑦

𝑙 sin 𝛼
)) (82) 
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 𝑀𝑠𝜑
′ /𝑦 =

𝑙 sin 𝛼

√𝑙2+𝑦2√𝑙2 sin2 𝛼+𝑦2
  or (83a) 

 𝑀𝑠𝜑
′ /𝑦 =

1

𝑟
cos 𝜑 (83b) 

The total observed relative length for an object 

that is extended in the y direction is therefore: 

 𝑀tot./𝑦 = √𝑀
𝑠𝜃

′ /𝑦
2 + 𝑀

𝑠𝜑
′ /𝑦

2  (84) 

  𝑀tot./𝑦 =
𝑙

𝑙2+𝑦2  or (85a) 

  𝑀tot./𝑦 =
1

𝑟
√1 − sin2 𝜑 sin2 𝜃 (85b) 

Note that Eq. 85 is the same as Eq. 55. This is not 

surprising because the y coordinate of the cylin-

drical coordinate system about the y axis is the 

same as the y coordinate of the rectangular coor-

dinate system. Eq. 85 has been included here for 

completeness and in order to represent the result 

in this other coordinate system.
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Chapter 5 
Plotting Observed Length as a 

Function of Spherical Coordinates 

To acquire an intuitive sense for what the length 

equations mean, we can plot the total observed 

length relative to the true object length (i.e. the 

length magnification) as a function of the object’s 

position in spherical coordinates (r, θ, φ). In this 

way, these plots represent how the total observed 

relative length of the object changes as the object 

moves along one of the spherical coordinate 

directions. In all of the plots below, all lengths are 

shown in meters. Keep in mind that the observed 

lengths correspond to a one-meter-radius image 

capture sphere. 

Generally, the observed length of an object 

being smaller than the true length arises from two 

main mechanisms. 

First, the farther away the object is, the shorter 

it looks because it takes up a smaller portion of 

the entire view. This is a type of perspective effect 

which we call the distance-perspective effect. 

Secondly, for an object that is only extended 

in one direction (like a pencil), it will look shorter 

if it is somewhat tilted away from the observer. In 

art, this effect is called “foreshortening.” If the 

object is tilted so that it extends directly away 

from the observer (i.e. it is extended in the r 

direction), then it will appear to have zero length. 

In contrast, if the object is tilted such that its 

broadside is directly viewed (i.e. it’s extended in a 

direction that is perpendicular to the r direction), 

then it will have zero shortening from this tilt 

effect. 

In the plots below, the perceived shortening 

sometimes arises from the distance-perspective 

effect, sometimes arises from the foreshortening 

tilt effect, and sometimes arises from both. When 

the object is oriented such that its broadside is 

directly viewed, the total observed relative length 

then only depends on how far away the object is 

from the observer, which is the distance r. 

The first thing to note is that all of the total 

observed length equations when expressed in 

spherical coordinates (i.e. Eqs. 33b, 38b, 43b, 

49b, 55b, 58b, 61, 64, 73b, 79b, and 85b) depend 

on the r coordinate as (1/r), no matter in which 

direction the object is extended and no matter 

where the object is located. This means that no 

matter in which direction the object is extended 

and no matter where it is located, if it moves 

directly away from the observer, its total observed 

length decreases as (1/r). This function is plotted 

in Fig. 36. 

For instance, if an object directly moves to 

twice the distance from the observer as originally, 

then it will appear one half as long as originally. 
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Or, if an object directly moves to three times the 

distance from the observer as originally, then it 

will appear one third as long as originally. This is 

true no matter how the object is oriented, so that 

the word length may be called height if the object 

is oriented vertically. 

When the object is extended in the sθ, sφ, or sα 

direction, it is always viewed exactly from broad-

side no matter where it is located. This means that 

in these three cases, the total observed relative 

length depends only on r and nothing else. There-

fore, the entire equation is M = (1/r), as can be 

seen in Eqs. 43b, 61, 64, and 73b. This means that 

Fig. 36 shows the plot for Eqs. 43b, 61, 64, and 

73b for all object locations. 

Note that M is only 100% at r = 1 m, meaning 

that the observed height equals the true height. 

This is because we are using a one-meter-radius 

image capture sphere. If we instead used an image 

capture sphere with a different radius, it would 

shift the location of the M = 100% point but it 

would still be a (1/r) curve. 

In all of the other types of situations, when the 

object is at special locations where it is being 

viewed broadside, the M equation reduces down 

to M = 1/r and looks exactly the same as in Fig. 

36. In other words, Fig. 36 is also the exact same 

resulting plot for when the object is extended in 

the ρ direction (Eq. 33b) at the locations where  

θ = 0°, for when the object is extended in the z 

direction (Eqs. 38b and 58b) at the locations 

where θ = 90°, for when the object is extended in 

the x direction (Eq. 49b) at the locations where  

θ = 0°, for when the object is extended in the y 

direction (Eqs. 53b and 85b) at the locations 

where θ = 0°, and for when the object is extended 

in the l direction (Eq. 79b) at the locations where 

θ = 90° and φ = 90°. 

To be clear, even when the object is sitting at 

any other location besides these special locations, 

the object’s observed length will still decrease at a 

rate of (1/r) if the object moves directly in the r 

direction, no matter the direction that the object 

is extended in. Although, the associated equation 

may be more complicated than just M = (1/r). 

The (1/r) dependence means that if an object 

moves directly away from the observer at a con-

stant true velocity, its visually perceived length 

would shorten quickly at first and then would 

shorten more gradually later on. In the limit that 

the object moves infinitely far away, its perceived 

length reduces to zero. For instance, the distant 

stars are so far away from the earth, that they 

appear as point particles of light with zero length. 
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Figure 36. Total observed relative length as a function of r for: Mtot./sθ, Mtot./sφ, Mtot./sα, 

Mtot./ρ(θ=0°), Mtot./z(θ=90°), Mtot./x(θ=0°), Mtot./y(θ=0°), Mtot./l(θ=90°,φ=90°). 
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Fig. 37 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended in the ρ direction (the object is 

shown in blue), as the polar angle θ is increased, 

but its distance r from the observer is held con-

stant. This is an object that is extended directly 

away from the viewing axis and is moving away 

from the viewing axis in the θ direction such that 

it holds a constant distance r from the observer. 

Fig. 38 shows the resulting plot, showing Mtot./ρ as 

a function of θ for various fixed r values, which 

plots Eq. 33b.  

The farther away that the object is from the 

viewing axis in the θ direction, the shorter it will 

appear. Note that the data points in a given line 

in Fig. 38 represent the different locations that all 

have the same r value. 
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Figure 37. Plotting Mtot./ρ as θ increases. 
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Figure 38. Total observed relative length Mtot./ρ as a function of θ.
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Figure 39. Total observed relative length Mtot./ρ for central vision.
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Therefore, the progressive shortening as θ 

increases is solely due to the object tilting away 

from the viewer as it maintains a ρ orientation, 

and not from the distance-perspective effect. 

Fig. 39 shows the exact same information as in 

Fig. 38, but now only for the central region of 

vision. As Fig. 39 shows, if the object maintains a 

fixed overall distance r, an object that is extended 

in the ρ direction looks approximately the same 

length no matter where it is located, as long as it 

stays within the central region of vision. In other 

words, an object that continues to be extended in 

the ρ direction does not observably tilt as it moves 

around, if it stays within central vision. 

Fig. 40 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended in the z direction, as the polar 

angle θ is increased, but its distance r from the 

observer is held constant. Fig. 42 then shows the 

resulting plot, showing Mtot./z as a function of θ for 

various fixed r values, which is the plot of Eqs. 

38b and 58b. On the viewing axis (at θ = 0°) the 

object appears to have zero length because it is 

oriented so that it extends directly away from the 

observer. As the object moves in the θ direction 

but remains extended in the z direction, Fig. 42 

shows that the object appears to get larger. The 

farther away that the object is from the viewing 

axis in the θ  direction, the longer it appears. 

Note that the data points in a particular line in 

Fig. 42 represent the different locations that all 

have the same r distance. Therefore, the visually 
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Figure 40. Plotting Mtot./z as θ increases. 
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Figure 41. Plotting Mtot./x as θ increases. 
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Figure 42. Total observed relative length Mtot./z as a function of θ.
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perceived progressive lengthening that happens 

as θ increases is solely due to the object tilting 

toward broadside viewing as it remains extended 

in the z orientation, and not from the distance-

perspective effect. 

Fig. 41 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended in the x direction, as the 

object’s θ coordinate is increased. 

Fig. 43 shows the resulting plot, showing Mtot./x 

as a function of θ for various fixed φ values when 

r = 1 m, which is the plot of Eq. 49b. On the 

viewing axis, the object has its maximum length 

because it is being viewed broadside there. As the 

object moves in the θ direction, Fig. 43 shows 

that the object appears to get shorter. Because the 

object maintains the same overall distance r from 

the observer, the change in observed length is 

arising purely from the tilt effect.  

Fig. 44 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended in the y direction, as the 

object’s θ coordinate is increased. 

Fig. 46 shows the resulting plot, showing Mtot./y 

as a function of θ for various fixed φ values when 

r = 1 m, which is the plot of Eqs. 55b and 85b. 

On the viewing axis, the object has its maximum 

observed length because it is being viewed 

broadside there. As the object moves in the θ 

direction, Fig. 46 shows that the object appears to 

get shorter. Because the object maintains the 

same overall distance r from the observer, the 
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Figure 44. Plotting Mtot./y as θ increases. 
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Figure 43. Total observed relative length Mtot./x as a function of θ.
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Figure 45. Plotting Mtot./l as θ increases. 

l 

θ 



Chapter 5. Plotting Observed Length as a Function of Spherical Coordinates 

40 

change in observed length is arising purely from 

the tilt effect.  

Fig. 45 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended in the l direction, as the 

object’s θ coordinate is increased. 

Fig. 47 shows the resulting plot, showing Mtot./l 

as a function of θ for various fixed φ values when 

r = 1 m, which is the plot of Eq. 79b. On the 

viewing axis, the object has zero observed length 

because it is extended directly away from the 

observer. As the object moves in the θ direction, 

Fig. 47 indicates that the object appears to get 

longer. Because the object maintains the same 

overall distance r from the observer, the change 

in observed length is arising purely from the tilt 

effect.
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Figure 46. Total observed relative length Mtot./y as a function of θ.
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Figure 47. Total observed relative length Mtot./l as a function of θ.
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Chapter 6 
Plotting Observed Length as a 

Function of Original Object Coordinates 

Instead of plotting the total observed lengths as a 

function of spherical coordinates, which repre-

sented an object moving in the r, θ, or φ direc-

tions, we can plot them as a function of the 

original object coordinates. In this way, we can 

see how an object extended, for instance, in the x 

direction changes its observed length as it travels 

in the y direction. 

Note that plotting as a function of the object 

location coordinates of θ and φ is the same thing 

as plotting as a function of the observed spherical 

coordinates, and therefore leads to the same plot 

shown in Fig. 36. For this reason, they will not be 

plotted again here. This leaves us with the task of 

plotting the visually perceived lengths of objects 

that extend in rectangular coordinate directions as 

they move in rectangular coordinate directions, as 

well as plotting the visually perceived lengths of 

objects that extend in the cylindrical-about-the-y-

axis coordinate directions as they move in cylin-

drical-about-the-y-axis coordinate directions. 

Fig. 48 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended in the ρ direction, as the ob-

ject’s ρ coordinate is increased, but everything 

else is held constant, which is plotting Eq. 33a. 

Fig. 49 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended in the z direction, as the ob-

ject’s z coordinate is increased, but everything else 

is held constant, which is plotting Eq. 38a. 

The situation shown in Fig. 48 is equivalent to 

ρ 

z 

Figure 48. Plotting Mtot./ρ as ρ increases. 

z 

Figure 49. Plotting Mtot./z as z increases. 

ρ 
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an object that is extended directly away from the 

viewing axis and is moving away from the viewing 

axis. Fig. 50 shows the resulting plot, showing 

Mtot./ρ as a function of ρ for various fixed z values. 

On the viewing axis (at ρ = 0) the object has its 

maximum observed length because it is being 

viewed broadside and is relatively close to the 

viewer. As the object moves in the ρ direction at 

a constant true velocity, Fig. 50 shows that the 

object visually appears to become shorter quickly 

at first and then more gradually later on. This is 

because, as the object moves in the ρ direction, it 

gets farther away from the observer and also it 

becomes more tilted away from the observer. 

Due to mathematical symmetries, Fig. 50 also 

shows the plot of the situation shown in Fig. 49 

after appropriately relabeling the axes. 

Fig. 51 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended in the ρ direction, as the ob-

ject’s z coordinate is increased, but everything else 

is held constant, which is plotting Eq. 33a. The 

situation in Fig. 51 is equivalent to an object that 

is extended directly away from the viewing axis 

and is moving in the z direction. 

Fig. 52 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended in the z direction, as the ob-

ject’s ρ coordinate is increased, but everything 

else is held constant, which is plotting Eq. 38a.  

The resulting plot of the situation in Fig. 51 is 

shown in Fig. 53, showing Mtot./ρ as a function of 
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Figure 50. Total observed relative length Mtot./ρ as a function of ρ.
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Figure 51. Plotting Mtot./ρ as z increases. 
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Figure 52. Plotting Mtot./z as ρ increases. 
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z for various fixed ρ values. As expected, the 

father away that the object is from the observer 

in the z direction, the shorter it appears. For an 

object not on the viewing axis (i.e. not at ρ = 0), 

it is observed to have no length when at z = 0. 

This is because the object is located directly to the 

side of the observer (at θ = 90°) and is therefore 

titled directly away from the observer. Each of the 

curves in Fig. 53 (except the ρ = 0 curve) starts 

out very small when close to z = 0 and rapidly 

increases at first as z increases. This is because the 

object is quickly becoming tilted toward broad-

side-viewing as z increases. Then the observed 

length decreases because the object is getting far 

away. Note that the red (ρ = 0) curve is at 100% 

when z = 1 m. This is because we are using a one-

meter-radius image capture sphere and the object 

is literally on this sphere at this point and is being 

viewed broadside. There are no data points for 

the red curve for z < 1 m because that would be 

inside the imaging sphere. 

Due to mathematical symmetries, Fig. 53 also 

shows the plot of the situation shown in Fig. 52 

after relabeling the horizontal axis as ρ, the legend 

as z, and the horizontal axis as Mtot./z. 

Fig. 54 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended in the x direction, as the ob-

ject’s x coordinate is increased, which is the plot 

of Eq. 49a. 

Fig. 55 shows what it means to be plotting the 

object’s total observed relative length when the 

x 
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z 

Figure 54. Plotting Mtot./x as x increases. 
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Figure 55. Plotting Mtot./y as y increases. 
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object is extended in the y direction, as the ob-

ject’s y coordinate is increased, which is the plot 

of Eq. 55a. 

Fig. 56 shows the resulting plot for the situa-

tion shown in Fig. 54, which shows Mtot./x as a 

function of x for various fixed y values. At x = 0, 

the object’s observed length is at a maximum 

because it is being viewed broadside. 

As the object starts far off to the left and 

moves in the x direction, Fig. 56 shows that the 

object appears to get larger as it approaches the 

viewing axis, both because it is getting closer and 

because it is getting tilted more toward broadside. 

Fig. 57 shows the exact same information as is 

shown in Fig. 56, but with z = 2 m.  

Due to mathematical symmetries, Figs. 56 and 

57 also show the plots arising from the situation 

presented in Fig. 55. We now move on. 

The situations listed in Table 1 and shown in 

Figs. 58 to 63 have the exact same mathematical 

forms and all have the same resulting plot, which 

is shown in Fig. 64. 

Keep in mind that that the z coordinate of the 

rectangular coordinate system and the z coor-

dinate of the cylindrical coordinate system about 

the z axis are exactly the same. 
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Figure 56. Total observed relative length Mtot./x as a function of x with z = 1 m.
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Figure 57. Total observed relative length Mtot./x as a function of x with z = 2 m.
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Table 1. These situations all have the same plot shown in Fig. 64 after appropriate relabeling of axes. 

Length element As a function of For various fixed Equation Figure 

Mtot./x y x Eq. 49a Fig. 58 

Mtot./x z x  Eq. 49a Fig. 59 

Mtot./y x y Eq. 55a Fig. 60 

Mtot./y z y Eq. 55a Fig. 61 

Mtot./z x z Eq. 58a Fig. 62 

Mtot./z y z Eq. 58a Fig. 63 

x 

y 

z 

Figure 60. Plotting Mtot./y as x increases. 

x 

y 

z 

Figure 58. Plotting Mtot./x as y increases. 

x 
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z 

Figure 59. Plotting Mtot./x as z increases. 

x 

y 

z 

Figure 61. Plotting Mtot./y as z increases. 
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Figure 62. Plotting Mtot./z as x increases. 
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Figure 63. Plotting Mtot./z as y increases. 
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Fig. 65 shows what it means to be plotting the 

object’s total observed relative length when the 

object extends in the sα direction, as the object’s 

y coordinate is increased. Fig. 66 shows what it 

means to be plotting the object’s total observed 

relative length when the object extends in the sα 

α 

Figure 65. Plotting Mtot./sα as y increases. 
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α 

Figure 66. Plotting Mtot./sα as l increases. 
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Figure 64. Total observed relative length Mtot./x as a function of y with z = 1 m.
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Figure 67. Total observed relative length Mtot./sα as a function of y.
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direction, as the object’s l coordinate is increased. 

Fig. 67 shows the resulting plot for the situation 

in Fig. 65, showing Mtot./sα plotted as a function of 

y for various l values, which is the plot of Eq. 73a 

as y changes.  

As an object at l = 0 moves in the y direction 

away from y = 0, it becomes progressively shorter 

because it gets farther away from the observer. At 

the same time, the object continues being exactly 

broadside viewed. For the curves with higher l 

values, the general trend remains the same but the 

object becomes shorter more gradually because it 

is already farther away. 

Because of mathematical symmetry, the plot 

for the situation in Fig. 66, which is the plot of 

Eq. 73a as a function of l, looks exactly like the 

plot in Fig. 67 (after appropriately relabeling the 

axes and realizing that l is always positive).  

Fig. 68 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended in the l direction, as the ob-

ject’s y coordinate is increased. Fig. 69 shows 

what it means to be plotting the object’s total 

observed relative length when the object is exten-

ded in the y direction, as the object’s l coordinate 

is increased. Fig. 70 shows the resulting plot for 

the situation in Fig. 68, showing Mtot./l plotted as a 

function of y for various l values, which is the plot 

of Eq. 79a.  

For an object with l ≥ 1, it is observed to have 

no length when at y = 0. This is because the 

object is extended directly away from the obser-

ver at y = 0. For objects with l < 1, there are no 

data points at or near y = 0 because that would 
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Figure 68. Plotting Mtot./l as y increases. 
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Figure 69. Plotting Mtot./y as l increases. 
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Figure 70. Total observed relative length Mtot./l as a function of y.
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correspond to being inside the imaging sphere.  

Each of the curves (except the l = 0 curve) in 

Fig. 70 starts out very small when close to y = 0 

and rapidly increases at first as y increases. This is 

because the object is quickly becoming tilted 

more toward broadside-viewing as y increases. 

Then later the observed length decreases because 

the object is getting farther away. Because of 

mathematical symmetry, the plot for the situation 

in Fig. 69, which is the plot of Eq. 86 as a function 

of l, looks exactly like the plot in Fig. 70 (after 

appropriately relabeling the axes and realizing 

that l is always positive). The observed relative 

lengths change for the same reasons.  

Fig. 71 shows what it means to be plotting the 

object’s total observed relative length when the 

object is extended directly in the l direction, as the 

object’s l coordinate is increased. Fig. 72 shows 

what it means to be plotting the object’s total 

observed relative length when the object is ex-

tended in the y direction, as the object’s y coor-

dinate is increased. Fig. 73 shows the resulting 

plot for the situation in Fig. 71, showing Mtot./l 

plotted as a function of l for various y values, 

which is the plot of Eq. 79a. 

Fig. 73 shows that the object has a peak ob-

served length at l = 0 (i.e. when the object is 

directly overhead or underfoot of the viewer). 

This is because the object is being viewed exactly 

broadside at these locations. The object shortens 

as it moves in the l direction because it is getting 

farther away and because it’s tilting away. Because 

of symmetry, the plot for Fig. 72, which is the plot 

of Eq. 85a, looks exactly like the plot in Fig. 73. 
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Figure 71. Plotting Mtot./l as l increases. 
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Figure 72. Plotting Mtot./y as y increases. 
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Figure 73. Total observed relative length Mtot./l as a function of l.
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Chapter 7 
Observed Sphere Diameter 

as a Function of Position 

If an object has a shape that is extended in more 

than one direction, then the length equations will 

not be enough. Instead, several length equations 

should be applied together in order to find areas, 

as will be one in Chapter 8. However, for the case 

of a spherical object, the situation is especially 

simple. Such an object has the special property 

that the object as a whole never tilts away from 

the viewer. In other words, a sphere that is held 

at a fixed distance always looks exactly the same 

size no matter how the sphere is oriented. 

A sphere is visually equivalent to a flat circle 

of the same radius being oriented so that it is 

always being viewed exactly broadside. In terms 

of the coordinate systems used above, this is 

equivalent to an object always being extended 

along spherical coordinate directions. Therefore, 

the observed relative diameter equation for a 

sphere is the same as Eq. 61. Specifically, a small 

sphere with a true diameter d will be observed as 

a circle with an observed relative diameter of: 

 𝑀tot./𝑑 =
1

𝑟
  or (86) 

 𝑀tot./𝑑 =
1

√𝑥2+𝑦2+𝑧2
  or (87) 

 𝑀tot./𝑑 =
1

√𝜌2+𝑧2
  or (88) 

 𝑀tot./𝑑 =
1

√𝑙2+𝑦2
 (89) 

Eqs. 86 to 89 all mean the same thing but are 

expressed in the various coordinate systems. 

Because a sphere does not involve the tilt effect, 

its observed size depends only on its overall 

distance r from the observer (as usual, we are 

assuming that the object is small enough that the 

equations above can be used directly without 

integration). The plot of Eq. 86 is the same as 

shown in Fig. 36. 

Fig. 74 shows what it means to be plotting the 

object’s total observed relative diameter when the 

object is a sphere, as the object’s x coordinate is 

x 
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z 

Figure 74. Plotting Mtot./d as x increases. 
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increased. The resulting plot is shown in Fig. 75, 

showing Mtot./d plotted as a function of x for 

various y values when z = 0, which is the plot of 

Eq. 87. Because of mathematical symmetry, the 

plot in Fig. 75 is exactly what you get when you 

plot Eq. 87 as a function of y, Eq. 87 as a function 

of z, Eq. 88 as a function of ρ, Eq. 88 as a function 

of z, Eq. 89 as a function y, and Eq. 89 as a 

function of l (with the appropriate relabeling of 

the axes and range limitations).
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Figure 75. Total observed relative diameter Mtot./d as a function of x when z = 0.
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Chapter 8 
Observed Object Area 

as a Function of Position 

We next investigate how the geometry of human 

monocular vision determines the observed area 

of objects. As was the case with observed length, 

the observed area depends on the true object area, 

which is different from one object to the next. 

Therefore, of importance here is not the absolute 

observed area, but the relative observed area, 

which is calculated relative to the true area of the 

object. We therefore need to analyze the ratio of 

the observed area to the actual area, which we will 

call the relative observed area or the area magnifi-

cation. 

As with length magnification, area magnifica-

tion values will also be less than one because we 

are dealing with the naked eye when no mirrors, 

lenses, telescopes, or microscopes are involved.  

Just as was the case with lengths, when the 

relative observed area relates an angle parameter 

to a meter parameters, the units mismatch, giving 

the associated magnification a confusing and less 

useful meaning. To avoid this, we again transform 

each angle-length parameter to a meters-length 

parameter, just like we did before, and assume an 

imaging sphere with a radius of one meter. 

A large object will have one of its parts seen at 

one location with a certain magnification and 

other parts at other locations seen with different 

magnifications. Calculating the total area would 

therefore require evaluating integrals over many 

locations in an object-specific way.  However, to 

make more general statements, we therefore again 

focus on small objects that can be approximated 

as existing at a single location, meaning that we 

use derivatives. The point-wise area magnifica-

tion is the ratio of the observed small-object area 

to the true small-object area.  

For small two-dimensional patches that are 

extended in coordinate directions of smoothly-

varying coordinate systems, the patch  is approxi-

mately flat and thus the patch can be assumed to 

be a flat rectangle with an area equal to its width 

times its height. For instance, the true area of a 

small patch extended in a plane parallel to the x-y 

plane is dAx,y = dx dy. When a rectangular patch is 

projected onto the image capture sphere, which is 

also locally flat on small scales, we end up with a 

parallelogram-shaped patch. 

One pair of sides of the parallelogram extends 

in the l1 direction and has the length dl1 and the 

other pair of sides extends in the l2 direction and 

has the length dl2. In other words, dl1 is the ob-

served line on the image capture sphere that 

corresponds to two edges of the true rectangular 

patch and dl2 is the line on the imaging sphere that 
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corresponds to the other two edges of the true 

rectangle. 

In general, the line segments dl1 and dl2 are not 

necessarily perpendicular (i.e. the parallelogram is 

not necessarily a rectangle), and thus we must 

calculate the area of a parallelogram that is not 

necessarily a rectangle. Also, dl1 does not typically 

extend in just the sθʹ direction or just the sφʹ 

direction, but extends in an odd direction, with an 

sθʹ component and an sφʹ component. Similarly, 

dl2 extends in an odd direction. 

The best method of calculating the area of a 

parallelogram with sides extending in odd direc-

tions is using the magnitude of the cross product: 

𝑑𝐴observed = |𝑑𝐥⃑1 × 𝑑𝐥⃑2| 

Because we are dealing with a very small patch of 

area, the spherical image capture surface is locally 

flat and we can compute the cross product of the 

vectors with the r, sθʹ, and sφʹ components, as if it 

were a rectilinear coordinate system: 

𝑑𝐴observed = | (𝑑𝑙1,𝑠𝜃
′ 𝑑𝑙2,𝑠𝜑

′ − 𝑑𝑙1,𝑠𝜑
′ 𝑑𝑙2,𝑠𝜃

′ ) 𝐫⃑ 

                         + (𝑑𝑙1,𝑠𝜑
′ 𝑑𝑙2,𝑟 − 𝑑𝑙1,𝑟𝑑𝑙2,𝑠𝜑

′ ) 𝛉⃑⃑⃑ 

                         + (𝑑𝑙1,𝑟𝑑𝑙2,𝑠𝜃
′ − 𝑑𝑙1,𝑠𝜃

′ 𝑑𝑙2,𝑟) 𝛗⃑⃑⃑⃑| 

The observed patch of area always lies on the 

image capture sphere and never extends in the r 

direction, meaning that the r components are all 

zero: d1,r = 0 and d2,r = 0, leading to: 

 𝑑𝐴observed = |𝑑𝑙1,𝑠𝜃
′ 𝑑𝑙2,𝑠𝜑

′ − 𝑑𝑙1,𝑠𝜑
′ 𝑑𝑙2,𝑠𝜃

′ | 

We can expand each length element, keeping in 

mind that the edges of the true patch are extended 

in coordinate directions. 

𝑑𝐴observed =  

 |
𝑑𝑙

1,𝑠𝜃
′

𝑑𝑥
𝑑𝑥

𝑑𝑙
2,𝑠𝜑

′

𝑑𝑦
𝑑𝑦 −

𝑑𝑙
1,𝑠𝜑

′

𝑑𝑥
𝑑𝑥

𝑑𝑙
2,𝑠𝜃

′

𝑑𝑦
𝑑𝑦| 

 = |
𝑑𝑙

1,𝑠𝜃
′

𝑑𝑥

𝑑𝑙
2,𝑠𝜑

′

𝑑𝑦
−

𝑑𝑙
1,𝑠𝜑

′

𝑑𝑥

𝑑𝑙
2,𝑠𝜃

′

𝑑𝑦
| 𝑑𝑥𝑑𝑦 

 = |
𝑑𝑙

1,𝑠𝜃
′

𝑑𝑥

𝑑𝑙
2,𝑠𝜑

′

𝑑𝑦
−

𝑑𝑙
1,𝑠𝜑

′

𝑑𝑥

𝑑𝑙
2,𝑠𝜃

′

𝑑𝑦
| 𝑑𝐴𝑥,𝑦 

We can now write down the relative observed 

area, which is the observed area divided by the 

true area. 

 
𝑑𝐴observed

𝑑𝐴𝑥,𝑦
= |

𝑑𝑙
1,𝑠𝜃

′

𝑑𝑥

𝑑𝑙
2,𝑠𝜑

′

𝑑𝑦
−

𝑑𝑙
1,𝑠𝜑

′

𝑑𝑥

𝑑𝑙
2,𝑠𝜃

′

𝑑𝑦
| 

 
𝑑𝐴observed

𝑑𝐴𝑥,𝑦
= |𝑀𝑠𝜃

′ /𝑥𝑀𝑠𝜑
′ /𝑦 − 𝑀𝑠𝜑

′ /𝑥𝑀𝑠𝜃
′ /𝑦| 

To be consistent with our other notation, we can 

label the observed relative area, which is also 

called the area magnification, using the notation: 

 𝑀obs./𝑥,𝑦 =
𝑑𝐴observed

𝑑𝐴𝑥,𝑦
 

so that we finally have: 

 𝑀obs./𝑥,𝑦 = |𝑀𝑠𝜃
′ /𝑥𝑀𝑠𝜑

′ /𝑦 − 𝑀𝑠𝜑
′ /𝑥𝑀𝑠𝜃

′ /𝑦| (90) 

All other types of object area patches will follow 

the same formulation. 

8.1 Observed Object Area in Rectangular 

Coordinate/Cylindrical Coordinates About 

the z Axis 

Inserting the appropriate observed relative length 

equations from Eqs. 29 to 57 into the appropriate 

area magnification definitions such as Eq. 90, we 

find the equations below. Mathematically work-

ing out the extensive details is left to the reader. 

For a small patch of area that lies in a plane 

that is parallel to the x-y plane, it has the area 

magnification: 

  𝑀obs./𝑥,𝑦 =
𝑧

(𝑥2+𝑦2+𝑧2)3/2
  or (91) 

  𝑀obs./𝑥,𝑦 =
1

𝑟2 cos 𝜃 (92)  

For a small patch of area that lies in a plane that 

is parallel to the x-z plane, the patch has the area 

magnification: 

 𝑀obs./𝑥,𝑧 =
|𝑦|

(𝑥2+𝑦2+𝑧2)3/2  or (93) 
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 𝑀obs./𝑥,𝑧 =
1

𝑟2 sin 𝜃 |sin 𝜑| (94) 

For a small patch of area that lies in a plane that 

is parallel to the y-z plane, the patch has the area 

magnification: 

 𝑀obs./𝑦,𝑧 =
|𝑥|

(𝑥2+𝑦2+𝑧2)3/2 or (95) 

 𝑀obs./𝑦,𝑧 =
1

𝑟2
sin 𝜃 |cos 𝜑| (96) 

For a small patch of area that extends in the ρ and 

z directions, the patch has the area magnification: 

 𝑀obs./𝜌,𝑧 = 0 (97) 

For a small patch of area that extends in the ρ and 

sφ directions, the patch has the area magnification: 

 𝑀obs./𝜌,𝑠𝜑
=

𝑧

(𝑧2+𝜌2)3/2  or (98) 

 𝑀obs./𝜌,𝑠𝜑
=

1

𝑟2 cos 𝜃 (99) 

Note that Eqs. 92 and Eq. 99 are the same equa-

tion because both represent a patch of area in a 

plane parallel to the x-y plane. 

For a small patch of area that extends in the sφ 

and z directions, it has the area magnification: 

 𝑀obs./𝑠𝜑,𝑧 =
𝜌

(𝑧2+𝜌2)3/2  or (100) 

 𝑀obs./𝑠𝜑,𝑧 =
1

𝑟2 sin 𝜃 (101) 

8.2 Observed Object Area in Spherical 

Coordinates 

Inserting the appropriate observed relative length 

equations from Eqs. 59 to 66 into the appropriate 

area magnification definitions, we find the equa-

tions below. 

For a small patch of area that lies on the object 

coordinate sphere, i.e. is extending in the sθ and 

sφ directions, it has the area magnification: 

 𝑀obs./𝑠𝜃,𝑠𝜑
=

1

𝑟2 (102)  

Because the object location surface is a sphere 

and the image capture surface is a sphere, the only 

object area patch that can be observed as a non-

zero image area patch is the one represented in 

Eq. 102. All other possibilities are expected to be 

zero, as can be verified by doing the calculation: 

 𝑀obs./𝑟,𝑠𝜑
=  𝑀obs./𝑟,𝑠𝜃

= 0 (103)  

8.3 Observed Object Area in Cylindrical 

Coordinates About the y Axis 

Inserting the appropriate observed relative length 

equations from Eqs. 68 to 83 into the appropriate 

area magnification definitions, we find the equa-

tions below. 

For a small patch of area that extends in the sα 

and l directions, it has the area magnification: 

 𝑀obs./𝑠𝛼,𝑙 =
|𝑦|

(𝑙2+𝑦2)3/2  or (104) 

 𝑀obs./𝑠𝛼,𝑙 =
1

𝑟2 sin 𝜃 |sin 𝜑| (105) 

Note that Eqs. 104 and 105 are the exact same as 

Eqs. 93 and 94 because they both involve area 

patches in the same plane.  

For a small patch of area that extends in the sα 

and y directions, it has the area magnification: 

 𝑀obs./𝑠𝛼,𝑦 =
𝑙

(𝑙2+𝑦2)3/2
  or (106) 

  𝑀obs./𝑠𝛼,𝑦 =
1

𝑟2
√1 − sin2 𝜃 sin2 𝜑 (107) 

For a small patch of area that extends in the l and 

y directions, it has the area magnification: 

 𝑀obs./𝑙,𝑦 = 0 (108)
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Chapter 9 
Plotting the Observed Object Area as a 

Function of Spherical Coordinates 

To get an intuitive sense of what the area equa-

tions mean, we can plot the observed relative area 

as a function of the object’s position in spherical 

coordinates (r, θ, φ). In this way, these plots 

represent how the observed relative area of the 

object changes as the object moves along one of 

the spherical coordinate directions. In all of the 

plots below, all areas are shown in square meters. 

Keep in mind that the observed areas correspond 

to a one-meter-radius image capture sphere. 

Generally, the observed area appearing smaller 

than the true area arises from two mechanisms. 

First, the farther away the object, the smaller it 

looks because it takes up a smaller portion of the 

entire view. As mentioned previously, this is the 

distance-perspective effect. Secondly, an object 

that is only extended in two directions (like a 

credit card), will look smaller if it is somewhat 

tilted away from the observer. If the object is 

tilted so that it lies in a plane that extends directly 

away from the observer (i.e. it extends in the r 

direction), then it will appear to have zero area. In 

contrast, if the object is tilted so that its broadside 

is directly viewed (i.e. it lies in a plane that is 

perpendicular to the r direction), then it will have 

zero shrinking from this tilt effect. 

In the plots below, the perceived diminished 

size sometimes arises from the distance-perspec-

tive effect, sometimes from the tilt effect, and 

sometimes from both effects. When the object is 

oriented so that its broadside is directly viewed, 

the total observed relative area then only depends 

on how far away the object is from the observer, 

which is the distance r. 

The first thing to notice is that all of the 

observed area equations in spherical coordinates 

(Eqs. 92, 94, 96, 99, 101, 102, 105, and 107) 

depend on r as (1/r2), even if they depend on 

other coordinates, no matter in which direction 

the object is extended and no matter where the 

object is located. This means that no matter in 

which direction the object is extended and no 

matter where it is located, if it moves directly 

away from the observer, its total observed area 

will decrease as (1/r2). 

For instance, if a patch of area moves directly 

to twice the distance from the observer as it was 

originally, then it will appear to have an area that 

is one fourth as large as originally. Or, if a patch 

of area moves to three times the distance from 

the observer as it was originally, then it will appear 

to have an area that is one ninth as large as 

originally. This is true no matter how the object is 

oriented. It should make sense that the observed 
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area depends on r as (1/r2) when we remember 

that the observed length of a line depended on r 

as (1/r). Any patch of area that is small enough 

acts like a square patch, and the area of a square 

is width squared, so that the r-functionality part 

of all area equations should be (1/r)(1/r) = (1/r2), 

as they are. 

This dependence is plotted in Fig. 76. Note 

that the observed relative area is 100% at r = 1 

because we are using a one-meter-radius image 

capture sphere. For r < 1, the object is inside the 

image capture sphere and there is no image. 

When the patch of area is extended in the sθ 

and sφ directions, it is always viewed exactly from 

broadside no matter where it is located. This 

means that in this case, the observed relative area 

depends only on r and nothing else. Therefore, 

the entire area equation is M = (1/r2), as can be 

seen in Eq. 102. This means that Fig. 76 shows 

the observed area for this case for all locations of 

the object. 

In all the other cases, when the object is at 

special locations where it is being viewed broad-

side, the corresponding area M equation reduces 

down to M = (1/r2) and the plot looks the same 

as in Fig. 76. In other words, Fig. 76 is also the 

exact same plot that results for when the object is 

extended in the following ways: in the x and y 

directions at the locations where θ = 0° (Eq. 92), 

when it’s extended in the x and z directions at the 

locations where θ = 90° and φ = ±90° (Eq. 94), 

when it’s extended in the y and z directions at the 

locations where θ = 90° and φ = 0° (Eq. 96), 

when it’s extended in the ρ and sφ directions at the 

locations where θ = 0° (Eq. 99), when it’s extend-

ed in the sφ and z directions at the locations where 

θ = 90° (Eq. 101), when it’s extended in the sα and 

l directions at the locations where θ = 90° and 

φ = ±90° (Eq. 105), and when it’s extended in the 

sα and y directions at the locations where θ = 0° 

(Eq. 107). 

Note that for situations where the object is 

extended in the ρ and z directions (Eq. 97), in the 

r and sφ directions (Eq. 103), or in the r and sθ 

directions (Eq. 103), the object has zero observed 

area because it is tilted so that it extends directly 

away from the observer. 

Fig. 77 shows what it means to be plotting the 

object’s observed relative area when the object is 

extended in the x and y directions (the object is 

shown in blue), as the object’s θ coordinate is 

increased, but its distance r from the observer is 

held constant. Fig. 78 shows what it means to be 

plotting the object’s observed relative area when 
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Figure 76. Observed relative area for: Mobs./sθ,sφ, Mobs./x,y(θ=0°), 

Mobs./x,z(θ=90°,φ=±90°), Mobs./y,z(θ=90°,φ=0°), Mobs./ρ,sφ(θ=0°), 

Mobs./sφ,z(θ=90°), Mobs./sα,l(θ=90°,φ=±90° ), Mobs./sα,y(θ=0°).
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the object is extended in the ρ and sφ directions, 

as the object’s θ coordinate is increased, but its 

distance r from the observer is held constant. Fig. 

79 shows the resulting plot of Mobs./x,y as a function 

of θ for various fixed r values, which is the plot 

of Eq. 92 and the situation shown in Fig. 77. 

Because the overall distance from the observer 

r is being held constant for each curve, the change 

in observed area along a curve is purely a result of 

the tilt effect. Fig. 79 is also the exact same plot 

that results when plotting Mobs./ρ,sφ as a function of 

θ for various fixed r values, which is the plot of 

Eq. 99 and the situation shown in Fig. 78. 

Fig. 80 shows what it means to be plotting the 

object’s observed relative area when the object is 

extended in the x and z directions, as the object’s 

θ coordinate is increased for various fixed φ 

values for r = 1. Fig. 81 shows what it means to 

be plotting the object’s observed relative area 

when the object is extended in the sα and l direc-

tions, as the object’s θ coordinate is increased for 

various fixed φ values for r = 1.  

Fig. 82 shows the resulting plot of Mobs./x,z as a 

function of θ for various fixed φ values, which is 

the plot of Eq. 94 and is the situation shown in 

Fig. 80. Because the overall distance from the 

observer r is being held constant for each curve, 

the change in observed area along a curve is 

purely a result of the tilt effect. Fig. 82 is also the 

exact same plot that results when plotting Mobs./sα,l 

as a function of θ for various fixed φ values, which 

is shown in Fig. 81 and is the plot of Eq. 105. 

Figure 77. Plotting Mobs./x,y as θ increases. 
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Figure 78. Plotting Mobs./ρ,sφ as θ increases. 
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Figure 79. Observed relative area Mobs./x,y as a function of θ.
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Fig. 83 shows what it means to be plotting the 

object’s observed relative area when the object is 

extended in the y and z directions, as the object’s 

θ coordinate is increased for various fixed φ 

values for r = 1. Fig. 85 shows the resulting plot, 

showing Mobs./y,z as a function of θ for various 

fixed φ values, which is the plot of Eq. 98.  

Because the overall distance from the observer 

r is being held constant for each curve, the change 

in observed area along a curve is a result of tilt.  

z 

Figure 80. Plotting Mobs./x,z as θ increases. 
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Figure 81. Plotting Mobs./sα,l as θ increases. 
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Figure 82. Observed relative area Mobs./x,z as a function of θ for r = 1 m.
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Figure 83. Plotting Mobs./y,z as θ increases. 
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Figure 85. Observed relative area Mobs./y,z as a function of θ for r = 1 m.
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Figure 87. Observed relative area Mobs./sα,y as a function of θ for r = 1 m.
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Figure 86. Observed relative area Mobs./sφ,z as a function of θ.
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Fig. 84 shows what it means to be plotting the 

object’s observed relative area when the object is 

extended in the sφ and z directions, as the object’s 

θ coordinate is increased for various fixed r 

values. Fig. 86 shows the resulting plot, showing 

Mobs./sφ,z as a function of θ for various fixed r 

values, which is the plot of Eq. 101. Because the 

overall distance from the observer r is being held 

constant for each curve, the change in observed 

area along a curve is purely a result of the tilt 

effect.  

Fig. 88 shows what it means to be plotting the 

object’s observed relative area when the object is 

extended in the sα and y directions, as the object’s 

θ coordinate is increased for various fixed φ 

values when r = 1. Fig. 87 shows the resulting 

plot, showing Mobs./sα,y as a function of θ for 

various fixed φ values when r = 1, which is the 

plot of Eq. 107. Because the overall distance from 

the observer r is being held constant for each 

curve, the change in observed area along a curve 

is purely a result of the tilt effect.
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Figure 88. Plotting Mobs./sα,y as θ increases. 
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Chapter 10 
Plotting the Observed Object Area as a 

Function of Original Object Coordinates 

We can now plot the area equations as a function 

of the object’s position in rectangular coordi-

nates, cylindrical coordinates about the z axis, and 

cylindrical coordinates about the y axis. The situa-

tions listed in Table 2 and shown in Figs. 89 to 95 

all have the exact same mathematical form. Thus, 

all of these situations have the same resulting plot, 

which is shown in Fig. 96. Note that the situations 

shown in Figs. 89, 90, and 91 only exactly match 

the plot in Fig. 96 when the third coordinate is 

zero. However, when the third coordinate is not 

zero in these cases, the resulting plot still has the 

same trends as in Fig. 96 but is simply scaled 

uniformly smaller.
  

Table 2. The situations that all have the same plot, shown in Fig. 96, after appropriate relabeling of axes. 

Area patch As a function of For various fixed Equation Figure 

Mobs./x,y z x or y Eq. 91 Fig. 89 

Mobs./x,z y x or z Eq. 93 Fig. 90 

Mobs./y,z x y or z Eq. 95 Fig. 91 

Mobs./ρ,sφ z ρ Eq. 98 Fig. 92 

Mobs./sφ,z ρ z Eq. 100 Fig. 93 

Mobs./sα,l y l Eq. 104 Fig. 94 

Mobs./sα,y l y Eq. 106 Fig. 95 

z 

Figure 89. Plotting Mobs./x,y as z increases. 
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Figure 90. Plotting Mobs./x,z as y increases. 
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Figure 91. Plotting Mobs./y,z as x increases. 
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Figure 92. Plotting Mobs./ρ,sφ as z increases. 
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Figure 93. Plotting Mobs./sφ,z as ρ increases. 
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Figure 94. Plotting Mobs./sα,l as y increases. 
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Figure 95. Plotting Mobs./sα,y as l increases. 
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The situations listed in Table 3 and shown in 

Figs. 97 to 106 all have the exact same mathema-

tical forms. Therefore, all of these situations have 

the exact same resulting plot, which is shown in 

Fig. 107, after appropriate relabeling of the axes. 

Note that the situations shown in Figs. 97 to 102 

only exactly match the plot in Fig. 107 when the 

third coordinate is zero. However, when the third 

coordinate is not zero in these cases, the resulting 

plot still has the same trends as in Fig. 107 but is 

simply scaled uniformly smaller. 

In all of the situations listed in Table 3, the de-

creasing observed size is a result of the distance-

perspective effect and the tilt effect. In each of 

these situations, as the object moves away from 

the viewing axis or away from the observer, as the 

case may be, it is observed to tilt at the same rate 

as the other situations and to increase in distance 

from the observer at the same rate as the other 

situations. 

 
 

Table 3. The situations that all have the same plot, shown in Fig. 107, after appropriate relabeling of axes. 

Area patch As a function of For various fixed Equation Figure 

Mobs./x,y x z Eq. 91 Fig. 97 

Mobs./x,y y z Eq. 91 Fig. 98 

Mobs./x,z x y Eq. 93 Fig. 99 

Mobs./x,z z y Eq. 93 Fig. 100 

Mobs./y,z y x Eq. 95 Fig. 101 

Mobs./y,z z x Eq. 95 Fig. 102 

Mobs./ρ,sφ ρ z Eq. 98 Fig. 103 

Mobs./sφ,z z ρ Eq. 100 Fig. 104 

Mobs./sα,l l y Eq. 104 Fig. 105 

Mobs./sα,y y l Eq. 106 Fig. 106 
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Figure 96. Observed relative area Mobs./x,y as a function of z for y = 0 m.
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Figure 97. Plotting Mobs./x,y as x increases. 
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Figure 98. Plotting Mobs./x,y as y increases. 
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Figure 99. Plotting Mobs./x,z as x increases. 
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Figure 100. Plotting Mobs./x,z as z increases. 
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Figure 101. Plotting Mobs./y,z as y increases. 
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Figure 102. Plotting Mobs./y,z as z increases. 
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Figure 105. Plotting Mobs./sα,l as l increases. 
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Figure 106. Plotting Mobs./sα,y as y increases. 
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Figure 103. Plotting Mobs./ρ,sφ as ρ increases. 
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Figure 104. Plotting Mobs./sφ,z as z increases. 
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Figure 107. Observed relative area Mobs./x,y as a function of x for y = 0 m.
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Chapter 11 
Mapping to a Flat Display Screen 

Traditional computer screens, television screens, 

movie projector screens, mobile device display 

screens, paintings, drawings, photographic prints, 

and printed posters all involve presenting a two-

dimensional image on a flat display surface that is 

supposed to give the same visual experience as 

looking at a physically present three-dimensional 

object or scene. However, the human retina is a 

spherical imaging surface. Also, the eye is a small, 

point-like observer that sees in terms of spherical 

coordinate angles. Therefore, what is seen on the 

spherical image capture surface must be some-

how mapped to a flat display screen. 

There are several approaches for doing this 

mapping. None of these approaches are exactly 

correct because there is simply no way to map a 

spherical image capture surface to a flat display 

screen without distortions. This means that three-

dimensional objects displayed on a flat screen will 

never exactly match what is seen by the human 

eye when looking at the same objects in the real 

world. To be clear, this fact has nothing to do 

with humans using two eyes in unison for vision. 

Even when just using one eye, three-dimensional 

objects that are displayed on a flat screen will 

never exactly match what the human eye sees 

when viewing the same objects in the physically 

real world. (Note that the use of a standard flat 

display screen also has the problem of presenting 

the same image to both eyes, thereby failing to 

reproduce the parallax effect; but that is a differ-

ent defect from what we are discussing here.) 

For there to be no distortions, the computer 

display screen or projector screen would have to 

be spherical, with the observer’s eye located at the 

exact center of this spherical screen, and with 

objects in the scene shown at the correct spherical 

coordinates. 

Most computer screens and projector screens 

are flat due to price and complexity issues. How-

ever, the screens in Omni Theaters, IMAX Dome 

theaters, MSG Spheres, planetariums, and dome 

flight simulators use spherically shaped projector 

screens in order to more accurately and immer-

sively present the three-dimensional world.  

Even though displaying the three-dimensional 

physical world on a flat screen introduces distor-

tions and field-of-view limitations, when done 

cleverly, the distortions can be minimized enough 

that images can be convincingly experienced as 

three-dimensional. 

When analyzing the mathematics of mapping 

an image from a spherical image capture surface 

to a flat display screen, this mapping process is 

called projection. However, this word is used in a 

general sense and does not necessarily imply a 

rectilinear projection or an isometric projection. 

A spherical surface centered on the observer 
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and a flat surface situated in front of the observer 

and perpendicular to the viewing direction both 

have azimuthal symmetry and therefore have the 

same azimuthal angle φ. This means that all that 

needs to be mapped is the polar angle θ to a radial 

distance d of a point on the flat display screen 

from the center of the display screen. 

In practice, a flat display screen cannot be 

infinitely large. This means that objects located 

near θ = 90° must either be mapped to a small 

enough radius that they fit on the display screen 

or be left outside the field of view. In the latter 

case, this means that objects in the real world 

which humans can see in their peripheral vision 

are not displayed at all on the display screen.  

Projecting all of the hemispherical image cap-

ture surface onto a finite-sized, flat display screen 

preserves all of the information, but it also intro-

duces the most distortion, so that the image may 

feel less real. 

In practice, after each projection operation, a 

scale factor is applied to the resulting flat image 

in order to display it on a particular screen at a 

particular size according to the wishes of the user. 

This is commonly called the image zoom level. 

This scaling does not change the appearance of 

the image on the flat display screen other than its 

overall size. The application of a scaling factor 

will therefore be ignored here. 

To simplify the equations, we will continue to 

assume that the image capture sphere has a radius 

of one meter: a = 1. 

11.1 Rectilinear Projection 

The rectilinear projection, which is also called the 

“central perspective projection” or the “standard 

projection,” introduces the least amount of dis-

tortion. This means that the objects and scenes 

that are displayed on the flat display screen feel 

the most real when this projection is used. For 

this reason, the rectilinear projection is the most 

common projection used in movies, television, 

photography, drawing, and painting. The rectili-

near projection is so commonly used that some 

professionals working in these fields do not even 

know that other projections exist. 

Even though using the rectilinear projection 

produces the least distortion, the tradeoff is that 

a large portion of the hemispherical, real-world 

field of view ends up off the screen. In other 

words, only a small central section of the image 

capture hemisphere fits on the display screen. As 

a result, visual information is lost and the peri-

pheral portions of human vision are completely 

excluded, making the vision experience feel less 

immersive. 

The larger the display screen, the smaller the 

amount of peripheral vision that is excluded, and 

the more immersive the experience feels. This is 

one of the reasons that movie theaters use large 

screens and that homeowners tend to buy the 

biggest television screen that they can afford. As 

mentioned previously, the only way to display the 

entire image capture hemisphere without distor-

tion is by using a spherical display screen such as 

found in dome theaters. 

The loss of the peripheral image information 

when using a rectilinear projection is not as signi-

ficant as it sounds. Keep in mind that the great 

majority of photoreceptive cone cells in humans 

are situated in the central region of vision.  

With that said, sometimes retaining peripheral 

visual information is more important than lack of 

distortion. In such cases, some other projection 

must be used. For instance, the rectilinear pro-

jection is typically not used for panoramic photo-

graphy or for all-sky scientific photography. 

Also, the rectilinear projection fails to properly 

include lateral perspective effects. In other words, 

any object that moves directly away from the 

viewing axis (i.e. in the ρ direction) should appear 

to get smaller as it moves, because it is moving 
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farther away from the observer. However, in the 

rectilinear projection, an object that is moving 

directly away from the viewing axis does not 

change size at all, in terms of its actual size on the 

display screen, no matter how far it goes. This 

drawback is not as bad as it sounds because the 

object typically moves off the screen, and thus 

out of view, before it travels enough distance that 

the lack of lateral perspective becomes obvious. 

The rectilinear projection consists of extend-

ing the radial line that goes from the observer 

through the object on the image capture sphere 

until it meets the flat display screen, as is shown 

in Fig. 108. 

In Figs. 108-113, the solid black circle or semi-

circle represents the hemispherical image capture 

surface, the solid black horizontal line represents 

the flat display screen, the image shown in the 

long grey box represents what you would actually 

see on the display screen, the solid grey arrows 

show the projection directions, and the dashed 

lines are drawn to represent various polar angles.  

As shown in Fig. 108, we end up with a right 

triangle with a as the adjacent side and d as the 

opposite side. Applying trigonometry, we find: 

𝑑/𝑎 = tan 𝜃. Setting a = 1, as we have done 

previously, this becomes: 

 𝑑 = tan 𝜃 (109) 

Fig. 108 makes it clear that the entire image cap-

ture hemisphere cannot fit on a finite flat display 

screen when the rectilinear projection is used.  An 

infinitely large display screen would be needed to 

contain the entire image capture hemisphere. 

Because of the ability to scale a flat image (i.e. 

zoom in and out), one can choose to use a very 

large mathematical flat display screen to capture a 

large amount of the hemispherical image capture 

surface and then scale the result down in order to 

fit it onto the physical display screen. However, 

the drawback of this approach is that the objects 

in the scene become very small in the image. 

By combining Eq. 109 with Eqs. 9, 11, and 20, 

we can derive the equations that can tell us how 

to take the object’s physical location (x, y, z) or (ρ, 

φ, z) or (α, y, l) and compute the object’s location 

(d, φ) on the flat display screen, leading to Eqs. 

110-112 (remembering that the φ coordinate of 

the flat display screen image is the same as the φ 

coordinate of the spherical image capture surface 

and therefore no additional equations are needed 

for φ):  

 𝑑 =
√𝑥2+𝑦2

𝑧
 (110) 

 𝑑 =
𝜌

𝑧
 (111) 

 𝑑 =
√𝑙2 sin2 𝛼+𝑦2

𝑙 cos 𝛼
 (112) 

As Eq. 111 shows, this projection leads to the fact 

that the object’s radial distance d from the central 

horizon point on the flat display screen, and the 

object’s radial distance ρ from the viewing axis in 

d 

θ 

Figure 108. Rectilinear projection. 

a 
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the original physical reality are linearly propor-

tional to each other with the coefficient of pro-

portionality being (1/z). This means that lines that 

were straight in the physical reality will end up 

straight on the flat display screen.  

For all objects in the original physical reality 

that were in the same x-y plane (i.e. at the same z 

value), they were projected onto the spherical 

image capture surface because of the nature of 

human vision and then projected back to a flat 

display screen along the same rays when using the 

rectilinear projection. This means that if the flat 

display screen were infinitely large, if the image 

scale factor was chosen so that the physical size 

of objects on the display screen exactly equaled 

the physical size of the objects in the original 

physical reality, if the image perfectly recreated 

the correct colors and brightness, and if the 

person viewing the display screen were standing 

at the exact location relative to the scene where 

the camera had been, then there would be zero 

distortion. This means that the image on the flat 

display screen would look just like the original 

physical reality (if viewing the image with only 

one eye and if ignoring depth from defocusing 

and if the person continuously gazed directly at 

the central horizon point on the screen). 

But in most real-world situations, flat display 

screens are nowhere near infinitely large (they can 

range in size from a few centimeters on a hand-

held mobile device to a few dozen meters in 

movie theatres), the viewer does not typically gaze 

continuously at exactly the center of the display 

screen, the viewer is typically much closer than 

the camera had been, and the image scale factor 

is rarely chosen to make the physical size of the 

objects on the display screen equal the size of the 

same objects in the original physical reality. For 

these reasons, in addition to the lack of peripheral 

vision information, using the rectilinear project-

tion in practice always involves some amount of 

distortion. Despite this fact, the human brain is 

tremendously forgiving so that even when the 

presented image has large amounts of distortion, 

the brain can still visually experience depth. As a 

result, rectilinear-projected images on a flat movie 

theatre screen can feel incredibly real. 

11.2 Stereographic Projection 

Although the rectilinear projection typically pro-

duces the least distortion, it suffers from the flaw 

of excluding peripheral-vision information. We 

d 

θ 

Figure 109. Stereographic projection. 
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can instead use a projection method that is nearly 

identical to the rectilinear projection but manages 

to fit the entire image capture hemisphere on the 

finite flat display screen. One common way of 

doing this is by taking Eq. 109 and replacing θ 

with θ/2, leading to Eq. 113 (note that an overall 

factor of two is also included in order to give Eq. 

113 the same sense of scale as Eq. 109).  

This approach is called the stereographic pro-

jection. This approach graphically means that we 

are still projecting a point on the imaging sphere 

outward along a straight ray, but the ray now 

originates from the bottom of the image capture 

sphere instead of from its center where the obser-

ver sits, as shown in Fig. 109. 

The stereographic projection preserves angles. 

This means that a particular angle between two 

physical lines in the real world, when seen on the 

flat display screen, will be the same angle no 

matter where it is located on the display screen 

(assuming that the distance of this angular object 

from the observer is constant and it is always 

viewed broadside). 

Looking at Fig. 109, we see that a right triangle 

is formed with d as its opposite side, 2a as its 

adjacent side, and θ/2 as its angle. This angle can 

be proven to have a value of θ/2 by recognizing 

that this right triangle contains the smaller right 

triangle with the angle θ and an isosceles triangle, 

so that the two acute angles of the isosceles tri-

angle must be equal to each other and also must 

add up to θ, which is only possible if each is θ/2. 

Applying trigonometry to the right triangle that 

has the angle θ/2 in Fig. 109, we end up with the 

equation tan(θ/2) = d/(2a). Setting a = 1, we 

finally find what we already expected: 

 𝑑 = 2 tan
𝜃

2
 (113) 

By combining Eq. 113 with Eqs. 9, 11, and 20, 

and using various trigonometric identities, we can 

derive the equations that can tell us how to take 

the object’s physical location (x, y, z) or (ρ, φ, z) or 

(α, y, l) and compute the object’s location (d, φ) 

on the flat display screen, leading to: 

 𝑑 = 2
√𝑥2+𝑦2+𝑧2−𝑧

√𝑥2+𝑦2
 (114) 

 𝑑 = 2
√𝜌2+𝑧2−𝑧

𝜌
 (115) 

 𝑑 = 2
√𝑙2+𝑦2−𝑙 cos 𝛼

√𝑦2+𝑙2 sin2 𝛼
 (116) 

11.3 Equidistant Projection 

The equidistant projection simply maps the polar 

angle to the radial location on the display screen 

by setting them equal to each other: 

 𝑑 = 𝜃 (117) 

This is a simple linear relationship. As shown in 

Fig. 110, this means that a series of objects that 

are arranged on the image capture sphere with 

equal spacing will appear on the flat display screen 

θ 

d 

Figure 110. Equidistant projection. 
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to still have equal spacing. This can be thought of 

as taking the semicircle and unrolling it until it 

becomes a flat line. 

As usual, the thick black semicircle in Fig. 110 

represents the hemispherical image capture sur-

face, the thick black horizontal line represents the 

flat display screen and the grey box represents 

what would actually appear on the display screen.  

We will again assume that the chosen image 

scaling factor is such that the entire image capture 

hemisphere ends up on the display screen. 

This equidistant projection preserves angular 

distance (Δθ) relationships. This means that no 

matter where an object is located in the real field 

of view and in the corresponding image on the 

flat display screen, the object will always extend 

across the same angular distance Δθ, (if the object 

holds its distance r constant and continues to be 

viewed from broadside), and therefore it will 

always have the same observed length on the flat 

display screen if the equidistant projection is used.  

Or, in other words, if the distance between 

two points in physical reality is held constant and 

the two points are the same distance r from the 

observer, and both points have the same azimu-

thal angle, then their observed separation distance 

on the flat display screen will be the same no 

matter where they are located, if the equidistant 

projection is used.  

By combining Eq. 117 with Eqs. 9, 11, and 20, 

we can derive the equations that can tell us how 

to take the object’s true physical location (x, y, z) 

or (ρ, φ, z) or (α, y, l) and compute the object’s 

location (d, φ) on the flat display screen: 

 𝑑 = tan−1 (
√𝑥2+𝑦2

𝑧
) (118) 

 𝑑 = tan−1 (
𝜌

𝑧
) (119) 

 𝑑 = cos−1 (
𝑙 cos 𝛼

√𝑙2+𝑦2
) (120) 

11.4 Equisolid Angle Projection 

The equisolid angle projection preserves object 

area relations. This means that a patch of area in 

physical reality can be moved anywhere (as long 

as it maintains a constant distance from the 

observer and is always viewed broadside) and it 

will always have the same area on the display 

screen when this projection is used. This means 

that we set d equal to the straight-line distance 

between the object’s location on the hemispheri-

cal image capture surface and the θ = 0 point on 

the hemispherical image capture surface, as is 

shown in Fig. 111. 

An isosceles triangle is formed by the line 

connecting the object’s location on the hemi-

spherical image capture surface and the θ = 0 

point, and the two sides each with length a. If you 

cut this isosceles triangle in half along its line of 

symmetry, you end up with a right triangle with a 

hypotenuse of length a, an opposite side of length 

d/2, and an angle of θ/2. Applying trigonometry 

θ 

d 

Figure 111. Equisolid angle projection. 
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to this right triangle, we end up with sin(θ/2) = 

(d/2)/a. Setting a = 1, we end up with: 

 𝑑 = 2 sin
𝜃

2
 (121) 

Combining Eq. 121 with Eqs. 9, 11, and 20, we 

can derive the equations that tell us how to take 

the object’s physical location (x, y, z) or (ρ, φ, z) or 

(α, y, l) and compute the object’s location (d, φ) 

on the flat display screen: 

 𝑑 = √2√1 −
𝑧

√𝑥2+𝑦2+𝑧2
 (122) 

 𝑑 = √2√1 −
𝑧

√𝜌2+𝑧2
 (123) 

 𝑑 = √2√1 −
𝑙 cos 𝛼

√𝑙2+𝑦2
 (124) 

11.5 Orthographic Projection 

The orthographic projection involves projecting 

every object on the hemispherical image capture 

surface directly in the z direction until ends up on 

the flat display screen, as is shown in Fig. 112.  

The orthographic projection is similar to the 

stereographic projection that is shown in Fig. 109, 

except that instead of the projection rays ema-

nating from the bottom of the spherical image 

capture surface, they effectively emanate from the 

point (x, y, z) = (0, 0, -∞). Looking at Fig. 112 and 

applying trigonometry, we find: d/a = sin θ. Setting 

a = 1 in this equation, it becomes: 

 𝑑 = sin 𝜃 (125) 

The orthographic projection leads to significant 

distortion at the higher polar angles (i.e. at the 

edge of the image on the display screen).  

By combining Eq. 125 with Eqs. 9, 11, and 20, 

and using various trigonometry identities, we can 

derive the equations that can tell us how to take 

the object’s physical location (x, y, z) or (ρ, φ, z) or 

(α, y, l) and compute the object’s location (d, φ) 

on the flat display screen:  

 𝑑 =
√𝑥2+𝑦2

√𝑥2+𝑦2+𝑧2
 (126) 

 𝑑 =
𝜌

√𝑧2+𝜌2
 (127) 

 𝑑 =
√𝑙2 sin2 𝛼+𝑦2

√𝑙2+𝑦2
 (128) 

11.6 Slight Pincushion Projection 

For the purpose of illustrating the effects that are 

present, I introduce here an additional projection 

method which is not standard and is almost never 

used, shown in Fig. 113. 

This projection will demonstrate the effects of 

pincushion distortion. In terms of the language 

used by photographers, the rectilinear projection 

causes almost no distortion, whereas the stereo-

graphic projection, the equidistant projection, the 

equisolid angle projection, and the orthographic 

projection cause barrel distortion (meaning that 

the center of the image bulges out like a barrel), 

and this projection causes pincushion distortion.  

θ 

d 

Figure 112. Orthographic projection. 

a 

d 

θ 

Figure 113. Slight pincushion projection. 
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Because none of the other projections cause 

pincushion distortion, this final projection is 

introduced to illustrate the associated effects. The 

slight pincushion projection is defined by Eq. 

129. Note that this definition does not corre-

spond to any particular geometric principle. 

 𝑑 =
1

1.2
tan(1.2𝜃) (129) 

By combining Eq. 129 with Eqs. 9, 11, and 20, 

and by using various trigonometry identities, we 

derive the equations that can tell us how to take 

the object’s physical location (x, y, z) or (ρ, φ, z) or 

(α, y, l) and compute the object’s location (d, φ) 

on 

the 

flat 

display screen:  

  𝑑 =
1

1.2
tan (1.2 tan−1 (

√𝑥2+𝑦2

𝑧
)) (130) 

  𝑑 =
1

1.2
tan (1.2 tan−1 (

𝜌

𝑧
)) (131) 

 𝑑 =
1

1.2
tan (1.2 cos−1 (

𝑙 cos 𝛼

√𝑙2+𝑦2
)) (132) 

11.7 Plotting the Flat Display Screen 

Projection Equations 

To get any idea for what the projection equations 

mean, we can plot d as a function of θ for the 

various projection methods, as shown in Fig. 114.  
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Figure 114. Projection methods for mapping to a flat display screen, d vs. θ.
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Specifically, Fig. 114 shows the plots of Eqs. 109, 

113, 117, 121, 125, and 129. Note that Fig. 114 

shows that all of the projection methods give 

nearly identical results for polar angles that are 

less than about 15°. This means that in the central 

region of vision and in the near peripheral region 

of vision, the image shown on the flat display 

screen looks approximately the same no matter 

which of these projection methods is used. 

Considering that the rectilinear projection is 

the projection with the least distortion and is the 

method that is most commonly used, let us, for 

comparison purposes, plot d instead as a function 

of tan θ for the various projection methods. The 

results are shown in Fig. 115. 

When plotted in this way, Fig. 115 makes it 

clear that the pincushion projection, the rectili-

near projection, and the set of all other project-

tions are in three distinct categories. For these 

reasons, the rectilinear projection is considered 

the standard projection. 

11.8 Using Rectangular Display Screen 

Coordinates 

Instead of using the polar display screen coordi-

nates (d, φ), we can use rectangular display screen 

coordinates (xscreen, yscreen), as is usually done in 

practice. The equations linking these coordinates 

are the usual polar coordinate equations which 

can be found using trigonometry: 

𝑥screen = 𝑑 cos 𝜑    and    𝑦screen = 𝑑 sin 𝜑 

Applying these two equations to the projection 

equations for rectilinear projection (Eqs. 110 to 

112), stereographic projection (Eqs. 114 to 116), 

equidistant projection (Eqs. 118 to 129), equisolid 

angle projection (Eqs. 122 to 124), orthographic  

projection (Eqs. 126 to 128), and slight pincush-

ion projection (Eqs. 130 to 132); along with the 

original equations for φ; we can find the equations 

that determine the screen location (xscreen, yscreen) 

for a particular object location in the physical 

world  in  terms of  the  various  object  coordinate 

Table 4. Equations specifying the value of c for the different projection  

methods, as a function of the object’s real-world coordinates (x, y, z). The  
equations in this table are labeled: (133), (134), (135), (136), (137), (138). 

Rectilinear 
1

𝑧
   

Stereographic 2
√𝑥2+𝑦2+𝑧2−𝑧

𝑥2+𝑦2   
 

Equidistant 1

√𝑥2+𝑦2
tan−1 (

√𝑥2+𝑦2

𝑧
)  

 

Equisolid Angle √
2

𝑥2+𝑦2
(1 −

𝑧

√𝑥2+𝑦2+𝑧2
)  

 

Orthographic 
1

√𝑥2+𝑦2+𝑧2
   

Slight Pincushion 
1

1.2√𝑥2+𝑦2
tan (1.2 tan−1 (

√𝑥2+𝑦2

𝑧
))  
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systems. When presented in condensed form by 

applying various trigonometric identities, we find 

the results that are as described in the following 

sections. 

11.9 Using Rectangular Coordinates for the 

Object Location 

For an object whose physical location in the real 

world is given in regular rectangular coordinates 

as (x, y, z), its location on the display screen is 

given by Eq. 151, where the overall multiplicative 

coefficient c depends on the projection method 

and is given in Table 4.  

 (𝑥screen, 𝑦screen) = (𝑐𝑥, 𝑐𝑦) (151) 

11.10 Using Cylindrical Coordinates About 

the z Axis for the Object Location 

For an object whose physical location in the real 

world is given in cylindrical coordinates about the 

z axis as (ρ, φ, z), its location on the display screen 

is given by Eq. 152, where the overall multipli-

cative coefficient c depends on the projection 

method and is given in Table 5. Note that the 

equations for c in Table 5 are the same equations 

as in Table 6, but expressed as a function of ρ/z. 

Because ρ/z = tan θ, this means that plotting the 

equations in Table 5 as a function of ρ/z is 

equivalent to plotting the equations in Table 6 as 

a function of tan θ, which has already been done. 

Specifically, Fig. 115 shows the results when you 

plot the equations in Table 5 as a function of ρ 

when z = 1. 

    (𝑥screen, 𝑦screen) = (𝑐 cos 𝜑 , 𝑐 sin 𝜑) (152) 

11.11 Using Spherical Coordinates for the 

Object Location 

For an object whose physical location in the real 

world is given in spherical coordinates as (r, θ, φ), 

its location on the display screen is given by Eq. 

159, where the overall multiplicative coefficient c 

depends on the projection method and is given in 

Table 6. Note that the equations for c in this case 

are the projection equations in standard form  

(Eqs. 109, 113, 117, 121, 125, & 129). This means 

Table 5. Equations specifying the value of c for  
the different projection methods, as a function  

of the object’s real-world coordinates (ρ, φ, z). 
The equations in this table are labeled: (139),  

(140), (141), (142), (143), (144). 

 Table 6. Equations specifying the value of c for  
the different projection methods, as a function  

of the object’s real-world coordinates (r, θ, φ).  
The equations in this table are labeled: (145),  

(146), (147), (148), (149), (150). 

Rectilinear 
𝜌

𝑧
   Rectilinear tan 𝜃 

Stereographic 2
√𝜌2+𝑧2−𝑧

𝜌
  

 
Stereographic 2 tan

𝜃

2
 

Equidistant tan−1 (
𝜌

𝑧
)   Equidistant 𝜃 

Equisolid Angle √2√1 −
𝑧

√𝜌2+𝑧2
  

 
Equisolid Angle 2 sin

𝜃

2
 

Orthographic 
𝜌

√𝑧2+𝜌2
   Orthographic sin 𝜃 

Slight Pincushion 
1

1.2
tan (1.2 tan−1 (

𝜌

𝑧
))   

 
Slight Pincushion 

1

1.2
tan(1.2𝜃) 
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that the plot of the equations in Table 6 is already 

shown in Fig. 114. 

     (𝑥screen, 𝑦screen) = (𝑐 cos 𝜑 , 𝑐 sin 𝜑) (159) 

11.12 Using Cylindrical Coordinates About y 

Axis for the Object Location 

For an object whose physical location in the real 

world is given in cylindrical coordinates about the 

y axis as (α, y, l), its location on the display screen 

is given by Eq. 160, where the overall multiplica-

tive coefficient c depends on the projection meth-

od and is given in Table 7. 

 (𝑥screen, 𝑦screen) = (𝑐𝑙 sin 𝛼 , 𝑐𝑦) (160) 

11.13 Plotting Various Surfaces Using All 

Projection Methods 

To illustrate the meaning of the projection equa-

tions applied to the human monocular geometry 

(Eqs. 133-160), we can plot various physical sur-

faces that exist in three-dimensional space and are 

extended in two of the coordinate dimensions. 

All of the remaining plots in this chapter were 

generated using only Eqs. 133-160 without the 

use of any 3D display software packages or pre-

built rendering engines. This means that the plots 

below are mathematically accurate and contain no 

approximations, simplifications, models, or hard-

ware-specific rendering parameters.  

In each of the plots below, all of the coor-

dinates are given in meters. Furthermore, neigh-

boring grid lines running in the same direction are 

exactly one meter apart in the original, physical, 

three-dimensional space (except where noted). 

Therefore, the intersection of any two sets of 

neighboring grid lines defines a square that has an 

area of exactly one square meter.  

All of the projection plots were created using 

the same screen scale. This means that, in the 

central region of vision (where all of the project-

tion methods produce approximately the same 

screen image), every projection method produces 

the same size squares. In other words, because all 

of the plots use the same screen scale, if you 

cropped every image down to a few dozen pixels 

in the middle of the image, every image would 

contain the same sized squares, regardless of the 

projection method. 

 Table 7. Equations specifying the value of c for the different projection  

methods, as a function of the object’s real-world coordinates (α, y, l).  
These equations are labeled: (153), (154), (155), (156), (157), (158). 

 
Rectilinear 

1

𝑙 cos 𝛼
   

 
Stereographic 2

√𝑙2+𝑦2−𝑙 cos 𝛼

𝑦2+𝑙2 sin2 𝛼
  

 

 
Equidistant 1

√𝑦2+𝑙2 sin2 𝛼
tan−1 (

√𝑦2+𝑙2 sin2 𝛼

𝑙 cos 𝛼
)  

 

 

Equisolid Angle √
2

𝑦2+𝑙2 sin2 𝛼
(1 −

𝑙 cos 𝛼

√𝑙2+𝑦2
)  

 

 
Orthographic 

1

√𝑙2+𝑦2
   

 
Slight Pincushion 

1

1.2√𝑦2+𝑙2 sin2 𝛼
tan (1.2 tan−1 (

√𝑦2+𝑙2 sin2 𝛼

𝑙 cos 𝛼
))  

 



Chapter 11. Mapping to a Flat Display Screen 

78 

The side effect of using a constant screen scale 

is that, aside from the rectilinear and slight pin-

cushion projections, each projection method has 

produced a differently sized overall image. To 

make clear that the pixels that are outside of the 

outermost circle are not actually part of the image, 

I have made these pixels grey.  

Fig. 116 shows a flat x-y plane that is sitting at 

z = 2 m, as observed by the human monocular 

vision system and then projected to a flat display 

screen using the various projection methods. In 

this figure, the grid lines are running in the x and 

y directions and are all spaced one meter apart. 

This plane physically represents an infinitely 

large, flat wall that the observer is staring directly 

at. Fig. 117 shows the same wall, but now at a 

distant of z = 5 m. Fig. 118 shows the same wall, 

but now at z = 10 m. These figures are plotting 

Eqs. 133-138 and Eq. 151 for the collection of 

(x, y, z) points that make up the grid lines. 

Figs. 116-118 make clear that the rectilinear 

projection does not properly preserve lateral size 

perspective effects. The squares near the edge of 

each image are farther away from the observer 

than the squares in central vision and therefore 

should appear smaller, and yet they appear the 

same size in the rectilinear projection. However, 

Figs. 116-118 show that the rectilinear projection 

does indeed preserve straight lines whereas the 

other projections do not. For this reason, these 

other projections are often called curvilinear pro-

jections. 

Because Figs. 116-118 show the same physical 

plane, but observed at different z distances from 

the observer, these figures taken together show 

the forward distance perspective effect, where the 

1-square-meter grid squares appear smaller the 

farther away they are from the observer. Specifi-

cally, close inspection of Fig. 118 compared to 

Fig. 117 reveals that each grid square appears one 

fourth as large in area at z = 10 m as at z = 5 m.  

This demonstrates the area perspective effect 

in the forward direction, where the observed area 

diminishes with the distance according to (1/z2), 

which is a special case of (1/r2) when x = y = 0. 

Note that all of the projections preserve this area 

perspective effect in the forward direction. 

Fig. 119 shows a flat x-z plane sitting at y = -2 

m, as observed by the human monocular vision 

system and projected onto a flat display screen 

using the various projection methods. In this 

figure, the grid lines are running in the x and z 

directions and are all spaced one meter apart. This 

plane physically represents an infinitely large, flat 

ground plane. Fig. 120 shows the same ground 

plane, but now at y = -5 m. These figures are 

plotting Eqs. 133-138 and Eq. 151 for the collec-

tion of (x, y, z) points that make up the grid lines. 

Figs. 119 and 120 demonstrate the horizon 

perspective effect. All of the grid lines running in 

the z direction are parallel to each other, but 

because they extend away from the observer in 

the z direction, they appear to all be converging at 

the central horizon point at θ = 0. Also, this effect 

makes the overall ground plane appear to end at 

the horizon line (i.e. where the sky meets the 

ground). Note that all of the projections preserve 

the horizon perspective effect. As before, Figs. 

119 and 120 demonstrate that the rectilinear pro-

jection preserves straight lines. 

Fig. 121 shows a flat x-z plane that is sitting at 

y = -5 m, the same as in Fig. 120, but now the grid 

lines are running in directions that are rotated 45° 

relative to the x and z directions. Because none of 

the grid lines in Fig. 121 are running in the z direc-

tion, none of the lines converge at the central 

horizon point at θ = 0. However, because each 

set of gridlines consists of lines that are parallel in 

the real world, each set converges at a perspective 

point on the horizon line that is not at the center. 

Because there are two different sets of parallel 

lines, there are two different horizon points. 
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 Artists call this arrangement “two-point per-

spective.” In practice, two-point perspective is 

useful in drawing city scenes because buildings in 

real life tend to be laid out along, and aligned with, 

a rectangular ground plane grid that is usually 

rotated relative to the observer. 

Fig. 122 shows two y-z planes, one at x = -2 m 

and the other at x = 2 m, as observed by the 

human monocular vision system and projected 

onto a flat display screen using the various projec-

tion methods. In this figure, the grid lines are 

running in the y and z directions and are all spaced 

one meter apart. These planes physically repre-

sent two parallel, infinitely large walls. Fig. 123 

shows the same setup but now with the planes at 

x = -5 m and x = 5 m. These figures are plotting 

Eqs. 133-138 and Eq. 151 for the collection of  

(x, y, z) points that make up the grid lines. These 

figures demonstrate that the central horizon point 

as a vanishing point applies to all sets of parallel 

lines extending in the z direction, and not just to 

such lines in a ground plane. 

Fig. 124 shows a flat ρ-sφ plane at z = 5 m, as 

observed by the human monocular vision system 

and projected onto a flat display screen using the 

various projection methods. In this figure, the 

grid lines are running in the ρ and sφ directions. 

The grid lines running in the sφ direction are all 

one meter apart. The grid lines running in the ρ 

direction are all 15° apart. This plane physically 

represents an infinitely large dart board. Note that 

a ρ-sφ plane is identical to an x-y plane except for 

the direction of the grid lines. Fig. 125 shows the 

same ρ-sφ plane, but now at a distance of z = 10 

m. These figures are plotting Eqs. 139-144 and 

Eq. 152. for the collection of (ρ, φ, z) points that 

make up the grid lines. 

Fig. 126 shows the cylindrical sφ-z surface at 

ρ = 5 m, as observed by the human monocular 

vision system and projected onto a flat display 

screen using the various projection methods. In 

this figure, the grid lines are running in the sφ and 

z directions. All of the grid lines are one meter 

apart. This surface physically represents an infi-

nitely long circular tunnel extending away from 

the viewer in the z direction. This figure is plot-

ting Eqs. 139-144 and Eq. 152 for the collection 

of (ρ, φ, z) points that make up the grid lines. 

Fig. 127 shows the spherical sθ-sφ surface sit-

ting at r = 18/π = 5.7297795 m, as observed by 

the human monocular vision system and project-

ed onto a flat display screen using the various 

projection methods. The observer is at the center 

of this sphere. In this figure, the grid lines are 

running in the sθ and sφ directions. All of the grid 

lines running in the sθ direction are spaced 15° 

apart. All of the grid lines running in the sφ direc-

tion are spaced one meter apart. The radius of this 

sphere was chosen to ensure this. This surface 

physically represents a spherical room. This figure 

is plotting Eqs. 145-150 and Eq. 159 for the 

collection of (r, θ, φ) points that make up the grid 

lines. 

Fig. 128 shows the cylindrical sα-y surface at  

l = 5 m, as observed by the human monocular 

vision system and projected onto a flat display 

screen using the various projection methods. In 

this figure, the grid lines are running in the sα and 

y directions. All of the grid lines are one meter 

apart. This surface physically represents standing 

on a platform in the middle of an infinitely tall 

grain silo. This figure is plotting Eqs. 153-158 and 

Eq. 160 for the collection of (α, y, l) points that 

make up the grid lines. 

Fig. 129 shows the flat sα-l plane at y = -5 m, 

as observed by the human monocular vision sys-

tem and projected onto a flat display screen using 

the various projection methods. In this figure, the 

grid lines are running in the sα and l directions. 

The grid lines running in the sα direction are 

spaced one meter apart. The grid lines running in 

the l direction are spaced 15° apart. This surface 
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physically represents a flat ground plane that has 

been marked up like a dart board. This figure is 

plotting Eqs. 153-158 and Eq. 160  for the collec-

tion of (α, y, l) points that make up the grid lines. 

Figs. 130-138 show more complex structures 

that were created by combining several of the sur-

faces already mentioned. Fig. 130 shows a canyon 

formed by the flat y-z planes at x = -5 m and at 

x = 5 m, and the flat x-z plane at y = -5 m, with 

grid lines running in the x, y, and z directions, as 

appropriate, and spaced one meter apart. 

Fig. 131 shows a square tunnel formed by the 

flat x-z planes at y = -2 m and y = 2 m and the flat 

y-z planes at x = -2 m and x = 2 m, with grid lines 

spaced one meter apart. 

Fig. 132 shows a larger square tunnel formed 

by the flat x-z planes at y = -5 m and y = 5 m and 

the flat y-z planes at x = -5 m and x = 5 m. 

Fig. 133 shows an arched tunnel formed by the 

x-z plane at y = -5 m, the y-z planes at x = -5 m 

and x = 5 m, and the sφ-z surface at ρ = 5 m. 

Fig. 134 shows a cube-shaped room formed 

by the x-z planes at y = -5 m and y = 5 m, the y-z 

planes at x = -5 m and x = 5 m, and the x-y planes 

at z = 10 m and z = 0 m. Note that this room is a 

10 m × 10 m × 10 m room with the observer 

located on the back wall at the middle of the wall. 

Fig. 135 shows the same room shown in Fig. 

134 but with markings added to aid in visually 

locating the parts of the walls. The floor and 

ceiling have been colored green with a concentric 

square pattern and the walls have been colored 

blue with the same type of pattern. Fig. 135 makes 

clear that the slight pincushion projection and the 

rectilinear projection are not able to show the 

whole room, while the other projections are. In 

the rectilinear projection version of the image, the 

back two meters of the walls, floor, and ceiling are 

not visible. In the slight pincushion projection 

version of the image, the back three meters of the 

walls, floor, and ceiling are not visible. 

Fig. 136 shows an arched room formed by the 

surfaces at y = -5 m, y = 5 m, x = -5 m, x = 5 m, 

ρ = 5 m, and z = 10 m. This arched room is the 

same as the room shown in Fig. 134, but with an 

arch shape added to the upper half of the room.  

Fig. 137 shows a cylindrical room formed by 

the x-z planes at y = -2 m and y = 2 m, and the 

sα-y surface at l = 5 m. 

Fig. 138 shows a sealed tunnel formed by the 

sφ-z surface at ρ = 5 m and the ρ-sφ surface at z = 

10 m. 

In each of these figures (Figs. 116-138), the 

image that was generated by the rectilinear projec-

tion seems to feel the most real and natural. 

However, this arises partly from the fact that the 

images generated by the curvilinear projections 

(except the slight pincushion projection) end up 

contained within a circular image boundary, but 

we are used to viewing images in everyday life that 

are contained within rectangular boundaries. 

To make the images generated by the curvili-

near projections feel more real and natural, we 

can crop these images down to square images, at 

the cost of throwing away part of the image infor-

mation. To demonstrate this, most of the images 

already shown have been cropped down to the 

same size. The results are shown in Figs 139-141 

(to conserve space, only the rectilinear and stereo-

graphic projections are shown).  
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Figure 116. A flat x-y plane at z = 2 m, with grid lines running in the x and y directions, spaced one meter apart. 
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Figure 117. A flat x-y plane at z = 5 m, with grid lines running in the x and y directions, spaced one meter apart. 
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Figure 118. A flat x-y plane at z = 10 m, with grid lines running in the x and y directions, spaced one meter apart. 
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Figure 119. A flat x-z plane at y = -2 m, with grid lines running in the x and z directions, spaced one meter apart. 
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Figure 120. A flat x-z plane at y = -5 m, with grid lines running in the x and z directions, spaced one meter apart. 
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Figure 121. A flat x-z plane at y = -5 m, with grid lines running 45° relative to the x and z axes, spaced one meter apart. 



Chapter 11. Mapping to a Flat Display Screen 

87 

 

Figure 122. The y-z planes at x = -2 m and x = 2 m, with grid lines running in the y and z directions, spaced a meter apart. 
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Figure 123. The y-z planes at x = -5 m and x = 5 m, with grid lines running in the y and z directions, spaced a meter apart. 
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Figure 124. A flat ρ-sφ plane at z = 5 m, with grid lines running in the ρ and sφ directions, sφ lines spaced one meter apart. 
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Figure 125. A flat ρ-sφ plane at z = 10 m, with grid lines running in the ρ and sφ directions, sφ lines spaced one meter apart.
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Figure 126. An sφ-z tunnel surface at ρ = 5 m, with grid lines running in the sφ and z directions, spaced one meter apart. 
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Figure 127. A spherical sθ-sφ surface with grid lines running in the sθ and sφ directions, sφ lines spaced one meter apart. 
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Figure 128. A cylindrical sα-y surface at l = 5 m, with grid lines running in the sα and y directions, spaced one meter apart. 
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Figure 129. A flat sα-l plane at y = -5 m, with grid lines running in the sα and l directions, sα lines spaced one meter apart. 



Chapter 11. Mapping to a Flat Display Screen 

95 

 

Figure 130. A canyon formed by the flat y-z planes at x = -5 m and x = 5 m, and the flat x-z plane at y = -5 m. 
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Figure 131. A square tunnel formed by the flat x-z planes at y = -2 m and y = 2 and the flat y-z planes at x = -2 and x = 2. 
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Figure 132. A square tunnel formed by the x-z planes at y = -5 m and y = 5 m and the y-z planes at x = -5 m and x = 5 m. 
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Figure 133. An arched tunnel formed by the planes at y = -5 m, x = -5 m, and x = 5 m, and the surface at ρ = 5 m. 



Chapter 11. Mapping to a Flat Display Screen 

99 

 

Figure 134. A room formed by the planes at y = -5 m, y = 5 m, x = -5 m, x = 5 m, and z = 10 m. 
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Figure 135. The room shown in Fig. 132 with markings added to aid in visually locating the parts of the walls. 
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Figure 136. An arched room formed by the surfaces at y = -5 m, y = 5 m, x = -5 m, x = 5 m, ρ = 5 m, and z = 10 m. 
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Figure 137. A cylindrical room formed by the x-z planes at y = -2 m and y = 2 m, and the sα-y surface at l = 5 m. 
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Figure 138. A sealed tunnel formed by the sφ-z surface at ρ = 5 m and the ρ-sφ surface at z = 10 m. 
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Figure 139. Cropped images for the various scenarios. 



Chapter 11. Mapping to a Flat Display Screen 

105 

 

Figure 140. Additional cropped images. 
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Figure 141. The last set of cropped images.
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Chapter 12 
Human Depth Perception Cues 

As established and demonstrated in the previous 

chapters, depth information from three-dimen-

sional scenes and objects is partially embedded in 

the two-dimensional images that humans visually 

experience. This is why humans can experience 

the external world as three-dimensional despite 

the fact that the human retinas only capture two-

dimensional images. In summary, we have now 

established that depth information is preserved 

through the following effects: 

1. As an object moves away from the observer 

in the r direction, its observed length diminishes 

according to the equation (1/r).  

2. As an object moves away from the observer 

in the r direction, its observed area diminishes 

according to the equation (1/r2). This effect and 

the previous effect involve situations when the 

object moves forward, away from the observer, 

which are the forward size perspective effects. 

3. As an object in front of the observer moves 

laterally away from the viewing axis, its observed 

size and area diminish in complicated ways, which 

are the lateral size perspective effects. An object 

moving in an odd direction experiences a combi-

nation of the forward size perspective effects and 

the lateral size perspective effects. 

4. As an object moves away from the observer 

in the z direction, it appears to be moving toward 

the central horizon point. 

5. Parallel lines that extend away from the 

observer in the z direction appear to all converge 

at the central horizon point. 

6. An object that moves away from the ob-

server not in the z direction, but rather in some 

direction in the x-z ground plane, appears to be 

moving toward some point on the horizon line 

that is not the central horizon point. 

7. Parallel lines that extend away from the ob-

server not in the z direction, but in some direction 

in an x-z ground plane, appear to converge at 

some point on the horizon line that is not the 

central horizon point. 

8. As a flat object tilts away from broadside 

viewing without changing its distance r from the 

observer, its length and area appear to diminish. 

9. An object that is moving at a constant speed 

will appear to move quickly when it is closer to 

the observer and more slowly when it is farther 

away from the observer. Similarly, when several 

objects are moving at the same physical speed in 

the same direction, the closer objects will appear 

to be moving at a faster speed. 

10. For everyday speeds, a moving object that 

is very far away will appear to be motionless. 

The human vision system uses these effects in 

various ways, along with other effects, in order to 

experience depth. The different ways that the 

human eyes and brain use these effects are called 
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visual depth perception cues. The human mono-

cular depth perception cues are described in the 

following sections. Note that some people use the 

term “perspective” narrowly so that only some of 

the effects below are types of perspective effects, 

while others use this term broadly to include all 

of the effects below. To avoid confusion, I will 

avoid using this term, with the understanding that 

all of the effects below are either perspective 

effects or are related or work in conjunction with 

perspective effects. 

12.1 Motion Parallax 

If you are moving smoothly as you look out at the 

stationary external world, it is equivalent to you 

staying motionless while the entire world moves 

in a corresponding way. As the whole world 

appears to move, objects that are closer to you 

will appear to move at a faster speed because of 

parallax. Your brain understands that all of the 

moving objects in your view have the same true 

speed (because it's really just one object—you—

that is moving through space). Therefore, your 

brain can determine how far away an object is 

from you by how fast it appears to be moving as 

the observer moves. Geometrically, this arises 

from the same parallax effect that binocular depth 

perception uses, but now the different images are 

arising from you moving your eyes to different 

viewing locations and not from you using two 

eyes. This is called motion parallax. 

As an example, imagine you are on a moving 

train. As you look out the window, closer objects 

such as telephone poles appear to move quickly 

across your field of view, while distant objects 

such as mountains appear to move slowly. 

12.2 Kinetic Depth Effect 

Physical objects tend to move in common ways 

which your brain understands and can thus use to 

extract depth information. For instance, consider 

a rigid object that is rotating in place. In the 

physical reality, all parts of the object travel along 

circular paths around the same rotational axis. 

When viewed by a human, all parts appear to be 

traveling along elliptical paths around the same 

rotational axis (assuming that you are not staring 

directly done the rotational axis). This is the 

kinetic depth effect. 

Furthermore, the apparent width of a part's 

elliptical path depends on how far away that part 

is from the rotational axis. Your brain can detect 

all this and extract depth information. Your brain 

can also do this type of thing with other common 

types of motion, such as projectile motion, wave 

motion, and walking motion. 

The kinetic depth effect is different from 

motion parallax. While motion parallax involves a 

steadily moving observer looking at a motionless 

world (and therefore always results in the whole 

world seeming to move in the same direction), the 

kinetic depth effect instead involves a motionless 

observer looking at moving objects. If all visible 

objects are moving past a fixed observer in the 

same direction at the same true speed, then the 

kinetic depth effect ends up equivalent to motion 

parallax. But for all other types of object motion, 

they are not equivalent. There is no way in which 

an observer can travel though space while viewing 

a motionless scene that will produce a result that 

is equivalent to the kinetic depth effect of waving 

motion, walking motion, explosive motion, and 

so forth. 

12.3 Depth from Optical Expansion 

When an object is moving steadily toward you, its 

apparent size increases in a specific way. The rate 

at which it appears to get bigger depends on how 

far away it is and how fast it is moving toward 

you. When the object is far away, it will appear to 

get bigger very slowly. When the object is very 

close, it will appear to get bigger quickly. This 
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effect is called optical expansion. Your brain can 

deduce not only that the object is moving but also 

the object's distance. Note that the reverse is also 

true: an object moving steadily away from you 

appears to get smaller at a rate that is proportional 

to its distance. 

When a baseball is thrown toward you, your 

brain uses optical expansion to keep track of its 

distance. This helps you properly catch the ball at 

the right time. The optical expansion depth cue is 

similar to the kinetic depth effect cue, except that 

for the kinetic depth effect cue, your brain is 

analyzing the apparent speed at which the object 

changes location in space. In contrast, for the 

optical expansion cue, your brain is analyzing the 

rate at which the perceived size of the object 

changes. A train that is traveling directly toward 

you would exhibit zero kinetic depth effect but 

would exhibit significant optical expansion. 

To be completely clear, optical expansion does 

not just involve an object appearing to get bigger 

as it moves toward you in a vague way. Rather, it 

involves an object getting bigger at a specific rate 

that corresponds to its distance from the observ-

er. Your brain subconsciously understands and 

has experience with this physics and can therefore 

extract depth information. 

12.4 Familiar Shape 

If an object has a familiar shape that you have 

experience with in the real world, your brain can 

recall from memory the true three-dimensional 

shape of that object and relate it to what you are 

seeing, thereby enabling depth perception. In this 

way, the three-dimensional shape of the object 

can be perceived without needing any other depth 

cues. Fig. 142 demonstrates the familiar shape 

depth cue. 

The image on the right in Fig. 142 contains in 

reality a collection of straight black lines and gray 

areas on a flat white screen or piece of paper. 

However, the lines are arranged in the familiar 

shape of what you see when you look at a real 

table. You therefore perceive depth. The image 

Figure 142. The familiar shape depth cue. 
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on the left shows the exact same number of lines 

attached to each other at the same places as the 

right image, but it does not seem to have depth 

because the angles of the lines don’t match what 

you see when you visually observe a real table. In 

other words, the object on the left does not have 

the correct familiar shape that will occur when 

viewing a real table. Note that for the image on 

the right, I have intentionally drawn the table 

without perspective effects so that the only depth 

cue is the familiar shape cue. 

12.5 Relative Size 

If two objects in your field of view are the same 

type of object, then your brain assumes that their 

true physical sizes must be the same. Therefore, 

your brain assumes that the difference in their 

visually perceived sizes must be solely caused by 

distance perspective effects. Your brain can thus 

extract depth information based on how much 

the perceived sizes of the two objects differ. For 

instance, if two telephone poles are in view, then 

the pole that appears to be three times taller than 

the other pole must be three times closer to you.  

Fig. 143 demonstrates the relative size depth 

cue. For the image on the right, your brain notices 

that each of the four objects has the same shape 

and therefore assumes that they all have the same 

true size. Therefore, your brain perceives that the 

smaller objects must be farther away from you. In 

contrast, the objects in the left image in Fig. 143 

all have the same size and therefore appear to be 

at the same distance. I have intentionally chosen 

an object with an unfamiliar size and shape so that 

the only depth cue present is the relative size 

depth cue (and the horizon line effect). 

12.6 Familiar Size 

If a certain object has a known true size, then its 

perceived size corresponds to how far away it is, 

even if there are no other objects in the field of 

view to compare it to. Your brain can therefore 

extract depth information from the perceived size 

of the object relative to its known true size. For 

instance, an apple is usually a few inches tall. An 

apple that appears to be much smaller than this 

Figure 143. The relative size depth cue. 
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must therefore be far away. Fig. 144 demonstrates 

the familiar size depth cue. The image on the left 

in Fig. 144 includes two non-specific, unfamiliar 

circular objects so that no depth cues are present. 

As a result, the two objects in the left image 

appear to be the same distance away. In contrast, 

the image on the right in Fig. 144 includes two 

familiar objects. Because you are familiar with 

Figure 144. The familiar size depth cue. 

Figure 145. The estimated size depth cue. 
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baseballs and soccer balls, and you know that the 

true size of a baseball is smaller than the true size 

of a soccer ball, your brain perceives that the 

soccer ball must be farther away. In order to get 

this effect to work well while looking at Fig. 144, 

close one eye and try to visualize the balls as real 

objects in a real scene that you are trying to reach 

out and grab. Which ball would you reach first? 

12.7 Estimated Size 

Amazingly, even if you see an object by itself, 

with nothing of the same shape to compare it to, 

and the object has an unfamiliar shape and size, 

your brain can still extract some depth informa-

tion from its perceived size by estimating its true 

size. In other words, your brain estimates the 

most probable true size of the object and then 

uses this as if it were a familiar size depth cue. 

The estimated size depth cue is not particularly 

effective because the estimated size will typically 

not be very accurate. Fig. 145 demonstrates the 

estimated size depth cue. 

Although the objects in the image on the right 

in Fig. 145 are unfamiliar and unlike each other, 

your brain may assume that cylindrical objects in 

everyday life (like soup cans) tend to have a small 

true size while conical objects in everyday life (like 

Christmas trees) tend to have a large true size. 

Thus, your brain may assume that the conical 

object in the right image is much bigger in true 

size and therefore must be farther away from you 

than the cylindrical object because it does not 

look that much bigger. If you are having a hard 

time visually perceiving the cylinder-like object in 

Fig. 145 as closer to you than the cone-like object, 

don't worry because this depth cue is not very 

effective. 

12.8 Uniform Size 

For a single, extended object that is known to be 

roughly constant in size along its length, the parts 

of the object that visually appear to be smaller 

must be farther away from you because of the 

perspective effects. For instance, a baseball bat is 

Figure 146. The uniform size depth cue. 
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roughly constant in cross-sectional area along its 

length. Therefore, the end of the baseball bat that 

appears to be much smaller than the other end 

must be farther away from you. 

Fig. 146 demonstrates the uniform size depth 

cue. A cylindrical rod in the real world has a 

uniform size along its length. Therefore, when 

one end of the rod appears larger than the other 

end, your brain correctly sees the larger end—the 

red end in this case—as the closer end. When 

looking at the image on the right in Fig. 146, 

notice how the red end of the rod seems to be 

sticking out of the screen. In contrast, the image 

on the left shows the same rod but without this 

depth cue present. 

12.9 Parallel Lines 

This cue can be thought of as a general case of 

the uniform size depth cue. This is because when 

two lines are parallel to each other in the real 

world, this is equivalent to a single object having 

a uniform size along its length. For instance, a 

straight road extending away from you has a 

uniform width along its length but can be thought 

of as two parallel lines (i.e. the two sides of the 

road). 

Two lines that are parallel to each other in the 

real world will be perceived as converging toward 

each other as they stretch farther away from you. 

If your brain knows that the two lines are parallel 

in the real world, it can extract depth information 

based on how close the lines appear to be. The 

places where the lines appear closer to each other 

must be farther away from you. 

Fig. 147 demonstrates the parallel lines depth 

cue. The image on the right in Fig. 147 shows a 

scene involving two roads on a flat ground plane 

with this depth cue at work. Therefore, these 

roads appear to be stretching away from you into 

the distance. In contrast, the image on the left 

shows the same scene but without this depth cue 

present, leading it to look flat. 

For a set of parallel lines that all extend exactly 

away from you, they will all appear to meet at the 

Figure 147. The parallel lines depth cue. 
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central horizon point (i.e. at the central vanishing 

point), as shown in Fig. 147. In contrast, if a set 

of parallel lines extends away from you at an 

oblique angle, then these lines will all appear to 

meet at one vanishing point that is not at the 

central horizon point. Such a situation is shown 

in Fig. 148. 

The image on the right of Fig. 148 shows two 

sets of parallel lines on the ground that each has 

its own non-central vanishing point. The image 

on the left shows the same scene but without any 

depth cues present. 

In general, every set of parallel lines has its 

own vanishing point. Therefore, there could be 

thousands of different vanishing points in a single 

image (or an infinite number, really). Interest-

ingly, if all the sets of parallel lines in a scene are 

all parallel to the ground plane, then all of their 

vanishing points will lie directly on the horizon 

line (which is where the sky appears to meet the 

ground). This may seem like a rare situation, but 

humans love to build things with surfaces parallel 

to the ground, so it is quite common. It is so 

common, in fact, that some people mistakenly 

think that vanishing points must always lie on the 

horizon line. 

In everyday life, humans tend to build objects 

that have a box shape or consist of a collection of 

box shapes, such as buildings, desks, cabinets, 

shelves, books, tables, and beds. The edges of a 

rectangular box form three sets of parallel lines. 

Therefore, a collection of boxy objects that all 

have their faces aligned with each other will only 

have three vanishing points. First instance, a row 

of houses has most of its edges appear as lines 

converging at one of the three vanishing points. 

For such cases, artists speak of drawing in three-

point perspective. 

Sometimes in art, the vertical vanishing point 

is ignored (so that all lines that are vertical in real 

life are drawn as vertical on the paper). For a 

collection of aligned boxy objects, this reduces 

the situation down to two vanishing points, which 

artists call two-point perspective. If there is a 

collection of aligned boxy objects and two of the 

dimensions are drawn without perspective, then 

Figure 148. The parallel lines depth cue. 
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there is only one vanishing point, which artists 

call one-point perspective. These concepts are 

shown in Fig. 149. 

Note that the parallel lines depth cue is not a 

special case of the horizon effect depth cue. The 

perception of depth established by parallel lines 

arises from the lines converging at a vanishing 

point and not from objects being close to the 

horizon line. In fact, the parallel lines depth cue 

works even if there is no horizon line at all. The 

right image of Fig. 150 shows a situation where 

there is no horizon line but there is a collection 

of parallel lines converging at the central horizon 

point. 

In the image on the right of Fig. 150, all of the 

lines that are running along the length of the 

tunnel meet at the central vanishing point. In 

contrast, the left image displays the same tunnel, 

Figure 149. Different artistic point perspective approaches. 

Figure 150. The parallel lines depth cue. 



Chapter 12. Human Depth Perception Cues 

116 

 

 

  

Figure 151. The texture gradient depth cue. 

Figure 152. The texture gradient depth cue, showing a canyon. 
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Figure 153. The texture gradient depth cue.  

Figure 154. The texture gradient depth cue arising from a collection of small objects.. 
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but without the parallel lines depth cue present, 

insofar as that is possible. Note that if there is not 

a horizon line but there are vanishing points, the 

horizon effect still occurs in the sense that the 

closer an object appears to be to a vanishing 

point, the farther away it seems to be. However, 

the vanishing point horizon effect still is not the 

parallel lines depth cue. You can have a central 

horizon point giving rise to a horizon effect in a 

scene even if no parallel lines are present. 

12.10 Texture Gradient 

Similar to how objects that are closer to you 

appear larger, parts of the pattern in a texture that 

are closer to you will appear larger. Your brain 

can therefore extract depth information from 

how the different parts of a texture compare to 

each other in perceived size. Also, the texture of 

a surface can indicate the tilt of the surface, which 

can help portray the three-dimensional shape of 

objects. Fig. 151 shows the texture gradient depth 

cue. In the image on the left in Fig. 151, all of the 

spots of the textured surface are perceived as 

being the same size, the same shape, and at about 

the same spacing, making this image appear flat. 

In contrast, the image on the right shows that the 

dots near the top of the image are smaller, closer 

together, and more distorted than the other dots, 

giving the impression that they are farther away. 

Note that the left image and the right image in 

Fig. 151 show the exact same textured surface 

with the dots in the same places. 

The texture gradient effect works not only on 

flat ground planes. It can also portray the three-

dimensional shape of complicated objects and 

scenes. For instance, Fig. 152 is the same as Fig. 

151, except that a canyon has been cut in the 

ground. The three-dimensional shape of the can-

yon in Fig. 152 is made apparent in the image on 

the right by the texture gradient depth cue. Note 

that there are no other depth cues present in this 

image (except for a small amount of recess 

shading). The image on the left in Fig. 152 shows 

the same texture and the same canyon but now 

without the texture gradient depth cue present.  

An additional example of the texture gradient 

depth cue is shown in Fig. 153. As Fig. 153 shows, 

a texture gradient does not have to consist solely 

of independent features or objects. Rather, it can 

consist of an interconnected pattern. The image 

on the right includes the texture gradient effect. 

As a result, the top of the image appears to be 

farther away from you than the bottom of the 

image. In contrast, the image on the left shows a 

texture but without the texture gradient effect, 

making it look flat. 

Another example of the texture gradient depth 

cue is shown in Fig. 154. As Fig. 154 shows, a 

texture gradient does not have to consist of a 

pattern that has been painted on a flat surface. It 

can also consist of a large collection of three-

dimensional objects that are situated so that they 

approximately form a flat surface (small rocks in 

this case).  

12.11 Horizon Effect 

For an object sitting on the ground, the physics 

dictates that the closer the object's center appears 

to be to the horizon, the farther away the object 

is from you. Your brain can therefore estimate 

how far away an object on the ground is by how 

close its center appears to be to the horizon line.  

Fig. 155 shows the horizon effect depth cue. 

In the image on the left, all three objects are at the 

same vertical location in the image. In contrast, 

the image on the right shows the same three 

objects but at different vertical locations. Your 

brain sees the blue cone as visually closer to the 

horizon and therefore perceives that it is farther 

away from you than the other objects. At the 

same time, the red cylinder is visually the farthest 

from the horizon line, so it seems the closest. 
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The horizon can also take the form of a 

vanishing point that is not necessarily the central 

horizon point. For instance, for objects sitting in 

a tunnel, the closer that an object appears to be to 

the tunnel's vanishing point, the farther away it 

seems to be. Fig. 156 demonstrates the horizon 

effect depth cue associated with a vanishing point 

instead of a horizon line. 

In the image on the right in Fig 156, the blue 

cone appears to be closer to the vanishing point 

Figure 155. The horizon effect depth cue. 

Figure 156. The horizon effect and parallel lines depth cues. 
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and therefore is perceived to be farther away from 

you. The image on the left shows the same scene, 

insofar as it is possible, without the horizon effect 

depth cue or the parallel lines depth cue. 

12.12 Occlusion 

When a near object is roughly in the same line of 

sight as a more distant object, the near object will 

partially or completely block the view of the 

distant object (assuming that it’s not transparent). 

Therefore, the object that is being blocked from 

view must be farther away from you. This effect 

is called occlusion, interposition, eclipsing, or 

overlapping. Your brain understands this effect 

and can use it to determine the relative distances 

of objects. Fig. 157 demonstrates the occlusion 

depth cue. 

In the image on the left in Fig. 157, the three 

objects are all clearly visible with no occlusion 

and therefore you cannot tell which object is 

closer. In contrast, the image on the right shows 

the same objects but includes occlusion. You are 

therefore able to perceive that the red cylinder is 

closer to you and the blue cone is farther away. 

(A small amount of horizon effect had to be 

included to prevent the objects from unnaturally 

penetrating each other.) Note that the occlusion 

depth cue can only tell you which object is closer 

to you. It cannot tell you the absolute distance of 

an object. 

The occlusion effect does not have to involve 

three-dimensional shapes. Even with flat pieces 

of paper, you can tell which piece of paper is 

farther away because it is the one being occluded. 

This is shown in Fig. 158. 

The image on the right in Fig. 158 shows one 

paper occluding another paper, in two different 

configurations. In both configurations, the paper 

that is being partially blocked appears to be far-

ther away. 

The same two papers are shown in the image 

on the left in Fig. 158 but without the occlusion 

depth cue, making it impossible to tell which one 

is farther away. 

Figure 157. The occlusion effect depth cue. 
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Figure 158. The occlusion effect depth cue. 

 

Figure 159. The occlusion effect depth cue. 
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Fig. 159 demonstrates how the front of an 

object occluding its back indicates that the front 

of the object is closer to you. The image on the 

right in Fig. 159 shows a box that is defined by its 

edges, presented in two different configurations. 

The occlusion effect gives you a sense of which 

face of the box is closest to you. In this way, 

occlusion can help give a sense of depth to an 

object. In contrast, the left image in Fig. 159 

shows a box without occlusion information. As a 

result, you can't tell which configuration the box 

is in or which face is closest to you. 

12.13 Surface Shading 

The way that light falls on an object and scatters 

away depends on the three-dimensional shape of 

the object. Thus, your brain can extract depth 

information from the shading on an object. The 

parts of an object that are darker tend to be the 

parts that are titled away from the light source. 

Therefore, if the position of the light source can 

be estimated, the tilt in three-dimensional space 

of each part of an object's surface can be deduced 

from its level of shading. The three-dimensional 

shape of the overall object can then be mentally 

reconstructed from the tilt of each part of its 

surface. Fig. 160 shows the surface shading depth 

cue for two simple objects. 

Note that in this case, we are not focusing on 

the depth perception related to the position of 

each object but on the depth perception related 

to each object's three-dimensional shape. In the 

image on the right in Fig. 160, the surface shading 

enables you to see the circular object as a three-

dimensional sphere and the other object as a 

three-dimensional cylinder. 

The fact that the observed shading changes 

smoothly along the object’s surfaces enables you 

to perceive the sides of the cylinder and the entire 

sphere as smoothly round. In contrast, the image 

on the left in Fig. 160 shows the same objects but 

without surface shading. As a result, these two 

objects look like flat paper cutouts. Shading is an 

effective way for an artist to show depth. 

Figure 160. The surface shading depth cue. 
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Figure 161. The recess shading depth cue. 

Figure 162. The recess shading and parallel lines depth cues. 
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Figure 163. The recess shading and texture gradient depth cues. 

Figure 164. The shadow shape depth cue. 



Chapter 12. Human Depth Perception Cues 

125 

12.14 Recess Shading 

The points on an object’s or landscape’s surface 

that are recessed will appear darker because light 

has a harder time reaching down into the recess. 

The observed recess shading therefore indicates 

the depth and shape of the recess. 

Using this depth cue, your brain is able to per-

ceive the presence, the shapes, and the depths of 

holes, recesses, cracks, corners, inlets, and narrow 

spaces. Fig. 161 demonstrates the recess shading 

depth cue. 

The image on the left in Fig. 161 shows a land-

scape containing three holes that have no recess 

shading. As a result, they do not even look like 

holes. In contrast, the image on the right in Fig. 

161 shows the same holes but now with recess 

shading included. As you can see, the shading 

enables you to see the holes as holes and to see 

their three-dimensional shapes. 

Fig. 162 also demonstrates the recess shading 

depth cue using a tunnel, this time combined with 

the parallel lines depth cue. As a result of the 

depth cues, the image on the right in Fig. 162 

appears to show an arched tunnel that stretches 

away from you into the distance. As you can see, 

including two depth cues instead of one makes 

the image's sense of depth even more convincing. 

For comparison, the image on the left in Fig. 162 

shows the same tunnel without any depth cues, 

insofar as that is possible. 

Fig. 163 shows the same tunnel as in Fig. 162, 

but now the image includes the texture gradient 

and recess shading depth cues rather than the 

parallel lines and recess shading depth cues. For 

comparison, the image on the left in Fig. 163 

shows the same tunnel without any depth cues, 

insofar as that is possible. 

12.15 Shadow Shape 

The shape of a shadow depends directly on the 

three-dimensional shape of the object that is 

casting the shadow and the angle of illumination. 

Therefore, your brain can partially deduce three-

dimensional shape information from an object's 

shadow. Figs. 164 and 165 clearly demonstrate 

the shadow shape depth cue. 

Figure 165. The shadow shape depth cue. 
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In the image on the left in Fig. 164, you can 

see the outline of some creature, but it is hard to 

discern its three-dimensional shape. In contrast, 

the image on the right in Fig. 164 shows the same 

creature but now its being illuminated from the 

side so that its shadow falls on the left wall. The 

shadow reveals the creature to be a T-Rex and 

partially reveals the three-dimensional shape of 

this T-Rex. 

In general, this depth cue works even if the 

illumination is not aimed directly toward a wall, 

as demonstrated in Fig. 165. The image on the 

right in Fig. 165 involves a shadow that is cast 

obliquely on the ground. This shadow reveals that 

the structure is a set of townhouses. This shadow 

also enables your brain to more effectively see the 

townhouses as three-dimensional objects. In con-

trast, the image on the left in Fig. 165 shows the 

same structure without a shadow, which causes it 

to appear as a non-descript blob of black. If the 

angle of illumination changes, the shadow shape 

changes in a corresponding way. 

12.16 Shadow Size, Location, and Blurriness 

The size, location, and blurriness of an object's 

shadow all depend on how far away the object is 

from the shadowed surface. In general, the far-

ther away an object is from the shadowed surface, 

the larger, the blurrier, and the more shifted its 

shadow will be. Your brain can therefore deduce 

distance information from the size, location, and 

blurriness of shadows. Fig. 166 demonstrates this 

depth cue. 

The image on the right in Fig. 166 shows three 

balls and their shadows. The shadow of the right-

most ball is larger, blurrier, and more shifted 

downward, indicating that the rightmost ball is 

farther away from the ground and closer to you. 

In contrast, the image on the left in Fig. 166 con-

tains the same three balls but without shadows so 

that there is no depth to the scene beyond the 

roundness of the balls. Fig. 167 also demonstrates 

these shadow effects. 

The image on the right in Fig. 167 shows the 

shadow location depth cue at work but does not 

Figure 166. The shadow size, shadow location, and shadow blurriness depth cues. 
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include differences in shadow blurriness or sha-

dow size. Even with just this one type of shadow 

depth cue (the shadow location depth cue), your 

brain can still perceive that the rightmost paper is 

farther away from the checkered surface and thus 

closer to you. In contrast, the image on the left in 

Fig. 167 does not have any shadow depth cues 

present and thus there is no sense of depth. 

12.17 Atmospheric Effects 

When an object is far away, the air between you 

and the object changes its appearance. Air is not 

perfectly transparent. Rather, the nitrogen and 

oxygen molecules that make up 99% of air give a 

distant object a slight whitish-blue tint under blue 

sky daytime lighting conditions. As an additional 

effect, the water droplets in the air can give the 

air a slight white or murky grey appearance. Both 

of these effects also cause the observed image to 

diminish in observed contrast, color saturation, 

and sharpness. 

The farther away an object is, the more it will 

have a flat, muted blue-white color and a softer, 

blurrier appearance. Your brain can deduce the 

distance of an object based on how much its 

image is altered by atmospheric effects. Note that 

atmospheric effects will only become significant 

when the light from an observed object travels 

through large amounts of air. As a result, this cue 

only works for objects that are far away, such as 

mountains, bridges, and buildings (except if it's an 

extremely foggy day). Unless it’s a very foggy day, 

you won’t notice atmospheric effects for objects 

that are only a few feet away, or even a few dozen 

feet away. 

During storms, atmospheric effects will give 

distant objects a gray tint rather than whitish-blue 

and sometimes even a green tint when tornadoes 

are present. At sunset and sunrise, atmospheric 

effects will give distant objects red, pink, orange, 

and yellow tints.  

You probably use this visual cue more than 

you realize. Astronauts who have walked on the 

moon reported that because the moon lacked an 

atmosphere, the distant hills looked much closer 

than they actually were, which was disorienting. 

Figure 167. The shadow location depth cue. 
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 They reported that as they walked toward a 

hill, it seemed to recede at the same rate. Fig. 168 

demonstrates the atmospheric effects depth cue. 

In the image on the right in Fig. 168, a series of 

mountains at different distances are observed to 

have different shades and colors because of the 

intervening air, depending on how far away they 

are. In contrast, the image on the left in Fig. 168 

shows the exact same mountains but without any 

atmospheric effects. As a result, all the mountains 

Figure 168. The atmospheric effects depth cue shown using a simple drawing. 

Figure 169. The atmospheric effects depth cue shown using a photo of the real world. 
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visually merge together and look flat. Note that I 

intentionally drew Fig. 168 as simple as possible 

to clearly demonstrate atmospheric effects. 

Fig. 169 also exhibits atmospheric effects but 

now using an actual photograph of the real world. 

The image on the right in Fig. 169 is a photograph 

of a mountain landscape with no photo editing or 

digital enhancements. The whitish-blue tints in 

this photo are completely natural and are what 

you would see with your naked eye if you were 

actually standing there looking out at this scene. 

This photograph shows that the farther away a 

mountain is, the more it appears whitish-blue, 

unsaturated, and contrast deficient. Note that the 

sky is whitish-blue for the same reason that the 

distant mountains are whitish-blue; because of 

the effect of the atmosphere on the light passing 

through it. 

The image on the left in Fig. 169 shows the 

exact same photo but without any atmospheric 

effects. To create this image on the left, I took the 

raw photograph shown on the right and carefully 

removed the atmospheric effects using photo 

editing software and my understanding of the 

physics. This involved removing the whitish-blue 

tint and increasing the saturation and contrast, 

one layer of mountains at a time. Notice how all 

of the mountains in the left image in Fig. 169 

seem to merge together into one indistinct mass 

without much depth. Interestingly, the image on 

the left looks like it came from a low-quality video 

game that failed to properly include atmospheric 

effects. 

12.18 Accommodation and Pupil Response 

In order for the human eye to properly focus on 

objects that are at different distances from it, the 

ciliary muscles in the eye must change the shape 

of the eye lens by changing the amount of muscle 

contraction. To bring a distant object into focus, 

the ciliary muscles relax, which allows the lens to 

flatten. To bring a near object into focus, the 

ciliary muscles contract, which then pushes the 

lens into a rounder shape. 

The human eye has a sensory apparatus to 

detect how much the ciliary muscles have been 

contracted. In this way, your brain can deduce the 

distance of an object by having the eyes focus on 

it and then sensing the contraction level of the 

ciliary muscles. 

This depth cue depends on muscle contraction 

information rather than image information, so I 

cannot demonstrate how it works using images. 

Also, a regular computer screen or printed photo 

cannot enable the accommodation depth cue to 

be used. 

Pupil response is also used for depth informa-

tion during accommodation. The size of the pupil 

slightly affects how much an object appears to be 

in focus. The lens in each eye gives rise to optical 

aberrations. As a result, if more of the lens is used, 

then the image is blurrier. Thus, your pupils work 

along with the ciliary muscles to properly bring 

objects into focus. Your brain then utilizes pupil 

constriction information along with ciliary muscle 

contraction information to determine the object's 

distance. 

12.19 Depth from Defocusing 

When the human eye brings a certain real object 

into focus, objects that are at different distances 

will appear blurrier. The amount of observed blur 

depends on how far away in the forward direction 

the other objects are from the object that is in 

focus. Specifically, the farther away an object is in 

the gazing direction from the object that is in 

focus, the blurrier it will appear. Your brain can 

therefore deduce distance from the amount of 

defocusing blur. Fig. 170 demonstrates the depth 

from defocusing visual depth perception cue. 

The image on the left in Fig. 170 shows three 

strawberries without defocusing blur. As a result, 
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they all appear to be the same distance away. In 

contrast, the image on the right in Fig. 170 shows 

the same three strawberries with defocusing blur 

included. (I have also included a small amount of 

the relative size depth cue to prevent the image 

from looking unnatural.) As a result, the straw-

berry on the left appears to be closer to you. 

12.20 Binocular Parallax 

As demonstrated, the human visual system uses 

about nineteen different monocular depth cues. 

The exact number will depend on how you decide 

to group special cases into categories, such as the 

shadow depth cues.  

In addition to all of these human monocular 

depth perception cues, there are two binocular 

visual cues used for depth perception, namely 

binocular parallax and vergence. This book was 

specifically about monocular depth cues and not 

binocular cues, so I include here the binocular 

depth cues for completeness, but only briefly. 

One of the most important human depth cues 

is binocular (two-eye) parallax. Because each eye 

is at a different location in the head, each eye sees 

a slightly different view of the world. The differ-

ence between what your left eye sees and what 

your right eye sees depends directly on the three-

dimensional shape of each object and its location 

in the three-dimensional world. The closer that an 

Figure 170. The depth from defocusing cue. 

Figure 171. The binocular parallax depth cue. 
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object is to you, the greater will be the difference 

between what your left eye sees and what your 

right eye sees. The human brain is therefore able 

to extract depth information from the difference 

between what your two eyes see. If the image of 

a chair seen by your left eye and the image of the 

same chair seen by your right eye at the same time 

are nearly identical, then the chair must be far 

away. In contrast, if these two images of the chair 

are very different, then the object must be very 

close. This effect is represented in Fig. 171. 

The overall geometric effect is called parallax. 

When a human is using two eyes in order to take 

advantage of parallax, it is called two-eye parallax 

or binocular parallax. The difference between the 

left-eye image and the right-eye is called binocular 

disparity. The ability of the brain to extract depth 

information from this binocular disparity is called 

stereopsis. 

12.21 Vergence 

The other binocular depth cue is vergence. When 

your eyes both look directly at the same object, 

they must both rotate slightly toward each other 

to do this. How much your eyes rotate depends 

on how close the object is. When an object is far 

away from you, your two eyes only rotate toward 

each other a small amount in order to both be 

looking directly at the same object. In contrast, 

when an object is close to you, your two eyes 

must rotate toward each other a large amount in 

order to both be looking directly at the same 

object. This is demonstrated in Fig. 172. 

The muscles that are involved in the eyeball 

rotations send signals to the brain indicating how 

much the eyes are rotated. The brain can then 

extract depth from this information. Note that 

this is an oculomotor depth cue and not purely a 

visual depth cue, so images on a flat screen can 

never enable this depth cue. 

12.22 Summary 

In summary, there are two binocular depth cues 

and about nineteen monocular depth cues. So-

called “3D” movie theaters that present binocular 

parallax depth cue information in addition to the 

traditional monocular depth cues require wearing 

special glasses to properly make your two eyes see 

slightly different images. These “3D” movies do 

not include all of the depth cues and are therefore 

not fully three-dimensional. Thus, these movies 

are more accurately called stereoscopic movies. 

Although “3D” movies do include the binocular 

parallax depth cue, this depth cue is not that 

useful for objects that are more than a few dozen 

feet away. This means that adding in the binocular 

parallax depth cue to a movie’s presentation only 

gives noticeable improvements in 3D-realism for 

near objects in the filmed scene. 

Also, regular movies that don't require wearing 

those special glasses already contain almost all of 

the monocular depth cues and are thus already 

very close to being 3D-realistic. As a result, so-

called “3D” movies are not that much more 3D-

realistic than regular movies. This is probably why Figure 172. The binocular vergence depth cue. 
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so-called “3D” movies have not become popular 

and have not displaced regular movies, despite 

having existed for over a hundred years. 

Neither regular movies nor so-called “3D” 

movies enable the accommodation depth cue, the 

pupil response depth cue, the true depth from 

defocusing depth cue, the vergence depth cue, or 

the true motion parallax depth cue. Despite all of 

these missing depth cues, amazingly, movies still 

appear convincingly three-dimensional because 

they enable all of the other depth cues (except 

that regular movies do not include the binocular 

parallax cue, as already noted). True holograms 

enable all of the depth cues that regular movies 

and “3D” movies do not, in addition to almost all 

of the other depth cues and are therefore the 

closest to being 3D-realistic images. However, at 

the time of this writing, true holograms are only 

still images and not moving pictures, and thus 

lack the kinetic depth effect. Additionally, true 

holograms are only a single color, which reduces 

the sense of realism. Perhaps in the future scien-

tists will discover how to present true holograms 

in multiple colors and as moving pictures. 

In conclusion, human vision is quite capable 

of seeing depth even if only one eye is function-

ing. Fortunately, this means that humans can see 

depth quite well when looking at regular movie 

screens, computer screens, television screens, and 

the screens of mobile devices (assuming that the 

displayed images are properly conveying mono-

cular depth cues). It also means that artists who 

understand the monocular depth cues can create 

a convincing sense of depth when painting or 

drawing on paper, canvas, wood, or any other flat 

surface.
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