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1. Covariant Geometry
- We would like to develop a mathematical framework in which Special Relativity can be 
applied more naturally.
- The Lorentz transformations were derived from Einstein's principle of relativity:

c2 t '2−x '2 y '2 z '2=c2t 2−x2 y2z2

- This means that all the terms on the left always equal the same scalar no matter what frame of 
reference we are in. This value is invariant under Lorentz transformations.
- In regular three-dimensional Galilean relativity, the dot product of two position vectors is 
invariant under transformations. 

Define the 4-vector (covariant) geometry as the set of rules that lead to the dot product of 
any two 4-vectors being invariant under Lorentz transformations.

- If we designate the column 4-vector Aμ as a “covariant” vector (where covariant implies that 
its dot product does not change under Lorentz transformations), then to form a dot product we 
must multiply by a row vector. Let us write the row 4-vector as Aμ and call it a “contravariant” 
vector to imply that it is dotted against the covariant vector.
- The label μ on the vector is an index that runs from 0 to 3, specifying the t, x, y, and z 
components of the 4-vector. Note the convention that when we are indexing a four-vector, we 
use Greek letters such as μ, ν, etc. , but when we are indexing a three-component vector, we use 
Latin letters such as i, j, k.
- Using this notation, the dot product of two four-vectors looks like this:

∑
μ=0

3

Aμ Aμ

- Note that if we recognize two 4-vectors with the same index as a dot product, the summation 
symbol is unnecessary. We drop the summation symbol with the understanding that repeated 
indices always means summation over all values of the index (this is called Einstein notation). 

Aμ Aμ=∑
μ=0

3

Aμ Aμ

- Note that repeated indices only imply summation if they are on the same side of the equals 
sign. If they are on opposite sides, then repeated indices represent the matching up of 
components.
- Assume we know the contravariant vector. What does its corresponding covariant vector look 
like? 
- Let us look at the spacetime coordinate 4-vector xμ = (ct, x, y, z). We know what its dot product 



should look like: x x=c2 t2−x2− y2−z2

- The only way this is possible is if we define the covariant vector as xμ = (ct, -x, -y, -z).
- In general then we define the dot product of any two 4-vectors as the product of one in 
covariant form and the other in contravariant form, where the two forms are related to each 
other by a sign change of the spatial components:

Aμ Bμ=A0 B0−A1 B1−A2 B2−A3 B3 and Aμ Aμ=A0
2−A1

2−A2
2−A3

2

- Can we mathematically express the relationship between a contravariant vector and its 
corresponding covariant vector? The metric tensor (similar to a matrix) gμν accomplishes this. 
-Notice that it has two Greek indices, so it is a two-dimensional tensor with 16 components 
total. 

x=g  x where gμν=[1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1]

- Let us expand this to get a feel for what this notation means:

x=∑
=0

3

g  x

xμ=gμ 0 x(0)+gμ1 x(1 )+gμ 2 x(2)+gμ 3 x(3 )   

or

x0=g00 x(0)+g01 x(1)+g 02 x(2)+g03 x(3) and

x1=g 10 x(0)+g1 1 x(1)+g1 2 x(2)+g1 3 x(3) and

x2=g20 x(0)+g21 x(1)+g22 x(2)+g23 x(3) and

x3=g 3 0 x(0)+g 31 x (1)+g3 2 x(2 )+g3 3 x(3)

- Plugging in the actual values for the various components of g, these four equations become:

x0= x(0) and

x1=−x(1) and

x2=−x(2) and

x3=−x(2)



- These equations reproduce what we have already said about covariant and contravariant 
vectors, indicating that we have used the notation correctly.
- We can represent the dot product of 4-vectors A and B in different ways:

A B=A B

=g  A B

=g  A B

=A0 B0−A1 B1−A2 B2−A3 B3

=A0 B0−A⋅B

- The covariant tensor gμν and its corresponding contravariant tensor gμν  are related according 
to:

g  g =
  where the identity tensor is defined as 

=1 if λ = υ and 0 otherwise

- If we think in terms of matrix algebra, all this equation is really saying is:

[1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1][

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1]=[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1]

- A 4-tensor is the two-dimensional analog of a 4-vector. It is an object that transforms from 
frame to frame according to the Lorentz transformations and whose complete inner product 
gives a scalar that is the same in all frames.
- Just like how a 4-vector has one time-like component and three space-like components, a 4-
tensor has one time-like row and three space-like rows as well as one time-like column and 
three space-like columns.
- Consider a 4-tensor F with components:

F=[F 00 F01 F 02 F 03

F10 F11 F 12 F 13

F 20 F 21 F 22 F 23

F30 F31 F 32 F 33
]

- The blue component F00 is the time-like,time-like component.
- The red components F0i are the time-like,space-like components.
- The green components Fi0 are the space-like,time-like components.
- The black components Fij are the space-like,space-like components.
- The inner product of two 4-tensors gives us a scalar that is the same in all reference frames. 
- The inner product of tensors is equivalent to a 4-vector dot product on both dimensions, so we 
must flip the sign of the space-like rows and then the space-like columns, leading to:

F αβ Fαβ=F 00 F 00−F 0 i F 0i−F i 0 F i 0+F i j F i j

since



F αβ=[F00 F 01 F02 F03

F10 F11 F12 F13

F 20 F 21 F22 F23

F30 F 31 F32 F33] and F αβ=[ F00 −F 01 −F02 −F 03

−F10 F 11 F12 F 13

−F 20 F 21 F22 F 23

−F30 F 31 F32 F 33 ]
2. Covariant Lorentz Transformation

- With our geometry now defined, we can write the Lorentz transformation in covariant notation 
as:

x '=
 x

- The Lorentz transformation tensor Λ transforms the spacetime coordinates x in frame K to the 
corresponding coordinates x' in frame K'.
- This can be represented in matrix notation as:

[c t '
x '
y '
z ' ]=[

Λ00 Λ01 Λ02 Λ03

Λ10 Λ11 Λ12 Λ13

Λ20 Λ21 Λ22 Λ23

Λ30 Λ31 Λ32 Λ33
][c t

x
y
z ]

- For a frame traveling in the x direction, this becomes:

[c t '
x '
y '
z ' ]=[

γ −βγ 0 0
−β γ γ 0 0

0 0 1 0
0 0 0 1][

c t
x
y
z ] where γ= 1

√1−v2/c2 and β=v / c

- The time-like,time-like component of the Lorentz transformation accounts for pure time 
dilation. 
- The space-like,space-like component accounts for pure length contraction.
- The space-like,time-like and the time-like,space-like components account for temporal and 
spatial origin shifting, which includes time dilation and length contraction effects.
- Einstein's principle of relativity can now be written:

x x=x ' x '

- Apply the Lorentz transformation to both vectors on the right side:

xμ xμ=Λν
μ xνΛμ

λ xλ

- The power of this notation is that the indices preserve the order of operation, which is 
necessary in matrix algebra, even if we switch the order of the symbols:



Λν
μ xν= xνΛν

μ which both mean [Λ00 Λ01 Λ02 Λ03

Λ10 Λ11 Λ12 Λ13

Λ20 Λ21 Λ22 Λ23

Λ30 Λ31 Λ32 Λ33
][c t

x
y
z ]

- Using this property, we change the dot product of the coordinate 4-vectors to:

xμ xμ= xνΛν
μΛμ

λ xλ

- When first deriving Einstein's relativity, we required all inertial frames to be physically 
equivalent and that lead to the law of reciprocity. The mathematical statement of reciprocity in 
4-vector notation is:

  
 

=


- You can check this for yourself by writing out the Lorentz transformation in matrix form, 
multiplying it by itself (being careful to use the covariant geometry notation rules) and you end 
up with the identity matrix.
- Using this relation, we finally have

x x=x x

- We have arrived at a tautology, indicating that our notation is self-consistent and that the dot 
product of two 4-vectors is indeed the same in all frames.
- In the language of covariant geometry, we can have covariant/contravariant tensors of 
different rank, but each transforms from frame to frame according to the Lorentz transformation 
applied to each dimension.
- The Lorentz operator is applied the number of times equal to the tensor's rank (number of 
dimensions).
- A rank-zero contravariant tensor is just a scalar and the Lorentz operator is applied zero times, 
thus a scalar is the same in all frames.
- A rank-one contravariant tensor is a 4-vector with four elements and the Lorentz operator is 
applied once in the same way it is applied to the coordinate 4-vector:

A '=
 A

- A rank-two contravariant tensor is a tensor with 16 elements and the Lorentz operator is 
applied twice to transform to a new frame:

F 'αβ=Λμ
αΛν

β Fμ ν

3. Covariant Differentiation
- We wish to organize physical properties and mathematical operations into covariant tensors. 
Once that is accomplished we will know how any other variable transforms simply by 
constructing it from covariant tensors and applying the rules above.
- Let us start with the partial derivative.



- We already know that the three-component vector of the partial derivative is the gradient: 

∇= ∂∂ x
, ∂
∂ y

, ∂
∂ z 

- The extra component to make a 4-vector must be the time component so that:

∂
∂ x

= ∂∂ x0 , ∂
∂ x1 , ∂

∂ x2 , ∂
∂ x3 

∂
∂ xμ

=(1
c
∂
∂ t

, ∂
∂ x

, ∂
∂ y

, ∂
∂ z )

- This is commonly written in compact notation as:

∂=
∂
∂ x

- This four-dimensional derivative obeys Lorentz transformations and is thus a 4-vector.
- Thus its dot-product does not change under Lorentz transformations:

∂∂=
∂
∂ x

∂
∂ x

∂∂=
∂
∂ x0

∂
∂ x0

− ∂
∂ x1

∂
∂ x1

− ∂
∂ x2

∂
∂ x2

− ∂
∂ x3

∂
∂ x3

∂μ∂μ=
1
c2
∂2

∂ t 2−∇
2

- Therefore, the wave operator is the same in all inertial reference frames in Special Relativity. 
- The derivative 4-vector dotted into a 4-vector A (called the 4-divergence) is:

∂ A=
∂
∂ x0

A0
∂
∂ x1

A1
∂
∂ x2

A2
∂
∂ x3

A3

∂μ Aμ=
1
c
∂ A0

∂ t
+∇⋅A

- This is the dot product of two 4-vectors and is thus also the same in all frames.



4. Covariant Electrodynamics
- The 4-divergence equation above looks like the charge-current continuity equation:

∂
∂ t
∇⋅J=0

- If we make the identification A0 = cρ and A = J, then we end up with the 4-divergence 
equation. These components thus form a 4-vector which we call the charge-current 4-vector:

J μ=(cρ ,J)

and the continuity equation becomes:

∂μ J μ=0

- The wave equation in the Lorenz gauge for the electromagnetic vector potential A and scalar 
potential ϕ are, in Gaussian units:

[ 1
c2
∂2

∂ t 2−∇
2]A=4

c
J

[ 1
c2
∂2

∂ t 2−∇
2]=4     where 

1
c
∂
∂ t
∇⋅A=0

- We already formed the charge and current density into a 4-vector and the wave operator into 
the dot product of two derivative 4-vectors. The remaining pieces should thus form another 
four-vector. The Lorenz condition on the right reduces to ∂ A=0 if we form the 
electromagnetic potential 4-vector:

Aμ=(Φ ,A)

The wave equations then reduce to:

∂μ∂μ Aα=4π
c

J α                                                            Wave Equations in Terms of Potentials

- The fields are expressed in terms of the potentials as:

E=− 1
c
∂A
∂ t
−∇

B=∇×A

- Let us expand these into components and try to use the covariant notation:



E x=−
∂ Ax

c∂ t
−∂
∂ x

,  E y=−
∂ Ay

c ∂ t
−∂
∂ y

, E z=−
∂ A z

c∂ t
−∂
∂ z

E x=−
∂ A1

∂ x0
∂ A0

∂ x1
,  E y=−

∂ A2

∂ x0
∂ A0

∂ x2
, E z=−

∂ A3

∂ x0
+∂ A0

∂ x3

E x=−∂
0 A1−∂1 A0 ,  E y=−∂

0 A2−∂2 A0 , E z=−(∂
0 A3−∂3 A0)

and

B x=
∂ Az

∂ y
−
∂ A y

∂ z
,  B y=

∂ A x

∂ z
−
∂ A z

∂ x
,   B z=

∂ Ay

∂ x
−
∂ Ax

∂ y

B x=−
∂ A3

∂ x2
∂ A2

∂ x3
,  B y=−

∂A1

∂ x3
∂ A3

∂ x1
,   B z=−

∂ A2

∂ x1
∂ A1

∂ x2

B x=− ∂
2 A3−∂3 A2 ,  B y=−∂

3 A1−∂1 A3 ,   B z=− ∂
1 A2−∂2 A1

- We may be tempted at this point to try to form 4-vectors out of the electric and magnetic field 
components. But it should be obvious from the forms above that the electric and magnetic field 
are connected and must be part of the same object. The six components will not fit in a 4-vector, 
so we must put them in a second-rank covariant tensor. Let us call it the field-strength tensor F.
- The six equations above for the six components of the electromagnetic field can each be set to 
one component of the field-strength tensor.

F 01=∂0 A1−∂1 A0 ,  F 02=∂0 A2−∂2 A0 , F 03=∂0 A3−∂2 A0

F 23=∂2 A3−∂3 A2 ,  F 13=∂1 A3−∂3 A1 ,   F 12=∂1 A2−∂2 A1

where F01 = -Ex,  F02 = -Ey,  F03 = -Ez,  F23 = -Bx,  F13 = By,  and F12 = -Bz

- We can now write each component in compact form as:

F αβ=∂α Aβ−∂β Aα

- This approach has told us the six meaningful components of the field strength tensor. But what 
are the other components?
- First note that switching the order of the indices on F just switches the sign of the right hand 
side, so that Fαβ = -Fβα. This tells us that the tensor is antisymmetric, and we therefore now 
know six more of its elements. The final four elements are the diagonal elements. Its easy to 
show:

F =∂ A−∂ A

F =0

- We now know all components of the field strength tensor:



F αβ=[ 0 −E x −E y −E z

E x 0 −B z By

E y B z 0 −Bx

E z −By B x 0 ]
- This equation tells us that to find the electromagnetic field in one inertial frame if we know 
the field in another frame, we apply a Lorentz transformation to both dimensions of the field 
strength tensor and then reduce it to a set of equations relating electromagnetic field 
components:

F '=
 

 F  

- Writing this equation out in three-vector notation, we have:

E '=γ(E+β×B)− γ2

γ+1
β(β⋅E)

B '=γ(B−β×E)− γ2

γ+1
β(β⋅B)

- Inserting these Lorentz frame transformation rules for the fields into Maxwell's equations, we 
can reduce the transformed Maxwell's equations down to their original form, proving that 
Maxwell's equations obey Lorentz transformations.
- In summary, we have formulated electrodynamics in terms of the potentials in covariant form:

∂μ∂μ Aα=4π
c

J α           Wave Equations for Potentials

F αβ=∂α Aβ−∂β Aα         Field-Potential Definitions

where

F αβ=[ 0 −E x −E y −E z

E x 0 −B z By

E y B z 0 −Bx

E z −By B x 0 ] , Aμ=(Φ ,A) , J μ=(cρ ,J) , and ∂μ=(1
c
∂
∂ t

,∇)

- Alternatively, we can form Maxwell's equations without the use of potentials and find:

∂α F αβ=4π
c

J β

∂α Fβ γ+∂β F γα+∂γ F αβ=0


