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PURPOSE 

The purpose of this project is to apply the particle swarm to a system of differential 

equations modeling the motion of a human’s elbow joint due to tendon forces applied by 

both the biceps and the triceps muscles.  Movement at the joints is caused by muscular 

contractions, which, in turn, are caused by neural impulses firing for a certain period of 

time. The distance a muscle contracts is proportional to the period of time that a neuron 

fires. Using particle swarm theory, we generate a math model that accepts as input the 

duration of a neural impulse. Given the duration of a neural impulse, the model will indicate 

how far the forearm should move.  The particle swarm program will find the neural 

impulses that produce the desired arm movement while minimizing the muscle fatigue in 

the biceps and triceps. 

 

MUSCLE MOVEMENT 

 The biceps and triceps muscles work together in the movement of a person’s arm and are 

located in the upper portion of the arm.  The biceps muscle (or “biceps brachii”) is responsible for 

movements such as flexing the elbow and rotating the forearm.  The muscle is made up of two 

bundles of muscle that have two different insertion points at the scapula and a shared insertion 

point below the elbow.  The triceps muscle (or “triceps brachii”) is responsible for such movement 

as pulling the forearm back to an extended position.  Like the biceps muscle, the triceps muscle has 

three bundles of muscle that have different insertion points at the top of the arm and a single 

insertion point near the elbow. 

 

 



 

MATHEMATICAL MODEL OF ELBOW MOVEMENT 

 A dynamic model describing the motion of the human forearm developed in the 

master’s thesis of Doug Meador, Texas Tech University, was used to create the computer 

model simulating elbow movement.  A system of differential equations was used to model 

the muscular dynamics.  This system is as follows: 

 

where  is the derivative of x.  The function ‘x’ is defined as follows: 

. 

The information that the elbow equations modeled, as shown above in x(t), respectively, 

were the angle of the elbow, the velocity of angle movement, the tendon force in the biceps 

and triceps, the length and velocity of contraction of the biceps and triceps, and the neural 

activation of both the biceps and triceps.  The differential equation information was 

programmed into MatLab, and comparisons were made between the graphs in the thesis 

and the graphs that were generated in our MatLab files to ensure the equations were 

correct.  The complete MatLab program can be found in the appendix. 



 

PARTICLE SWARM THEORY 

 Particle swarm optimization is a theory developed by Dr. Eberhart and Dr. Kennedy 

that involves using a number of random particles and running them through a mathematical 

equation called a fitness function.  A fitness function is used to decide which particles 

accomplish a set task the best.  For example, if one wanted to find the minimum value of 

the function , we would use  as the fitness function and choose which of the 

random particles created the smallest value for this function. 

 The basic process for how the particle swarm works is fairly simple.  First, the 

program initializes the particles it is using.  Then, it calculates the fitness value for each 

particle and determines whether that value is better or worse than that of previous 

particles in its group.  If it is better, it sets the new particle as ‘best’ for the local group.  This 

step is repeated to determine whether or not the particle has the best fitness value for a 

whole set of random particles that have been previously used.  The best particle of these is 

called the ‘global best’ particle.  The particle that is labeled as global best is the one that fits 

the mathematical equation best. 

 The fitness function that was used for this program came from a thesis written by 

Collin Witherspoon and has two components.  One component finds the neural 

innervations that minimize muscle fatigue in a person’s elbow while the other insures the 

elbow moves in the desired trajectory. 

Witherspoon’s thesis states that “Crowninshield and Brand identified [a] 

physiological relationship between muscle fatigue and the sum of cubed muscle stresses.”  



The first component of a fitness function is dealt with through this relationship.  The 

mathematical equation is as follows: 

 

T stands for the internal tension that the muscle produces, A is the cross-sectional area of 

the muscle, and k is the total number of muscles involved.  So, this equation can be 

interpreted for our project by saying we would take the tension created by the bicep, divide 

it by the cross-sectional area of the bicep, and cube the result.  We would then follow the 

same steps for the triceps and take the sum these outcomes.  This would give us the total 

fatigue on the system.  In a previous paragraph, steps were given for finding the ‘global 

best’ particle.  This particle stands for the optimal neural innervations necessary for 

minimizing this fatigue function. 

 The second component is a bit trickier to handle.  One thing a person must be 

careful of is making sure the program allows for muscle movement.  Since a person receives 

the least fatigue in their muscles when there is absolutely no muscle movement at all, the 

desired answer for a fitness function would be zero movement!  However, the purpose of 

this program is to show the minimized muscle fatigue when there is actual movement due 

to neural innervations.  Therefore, a second equation must be added to the fitness function 

that actually forces the elbow to move from a stationary position. 

 The MatLab programs for the Particle Swarm and the Fitness Function can be found 

in the Appendix. 

 



 

CONCLUSION 

 Graphs that model the angle movement, angle velocity, force on the biceps, and force on 

the triceps were very helpful in determining whether or not the particle swarm was working 

correctly.  Samples of these graphs from the particle swarm are as follows: 

 

 The upper graphs labeled ‘Angle Movement’ and ‘Velocity of Angle Movement’ were 

actually quite close to what they were supposed to be according to the thesis used as a basis for this 

project.  In real life, the model we worked toward began with the forearm at a ninety degree angle 

to the upper arm with the upper arm resting at the body’s side.  We worked in radians and labeled 

this position ‘zero radians.’  The angle formed by a person with their arm straight down their body 

was ninety degrees, or about 1.57 radians.  We also worked with the difference between the 

movement of a person’s arm depending on whether they were holding a five kilogram weight or 



were simply moving their arm.  These particular graphs represent a person holding a five kilogram 

weight. 

 As is evident by the graph, the program showed arm movement from zero radians to 

straight down the person’s side with a little bouncing at the end.  This bouncing was caused from 

the force of the arm in the downward direction.  As the forearm was moving, the force actually 

caused the forearm to bounce in the opposite direction once it reached its fully outstretched angle.  

This is the reason for the ‘wiggles’ in the velocity graph as well.  Since the velocity is a derivative of 

the angle movement with respect to time, the effect of the arm bouncing at the bottom of the fall 

was shown in both graphs.  The units used for velocity were radians per second. 

 The lower graphs differed greatly from what we were supposed to see.  In the left-most 

graph labeled ‘Force on Biceps’ (tendon force), there was supposed to be a notable force change, 

but it was only supposed to reach eighty Newtons, while our graph showed forces reaching upwards 

of 1400 Newtons.  Also, once the arm reached its resting angle of 1.57 radians, the force should 

have dropped to zero radians.  The right-hand graph labeled ‘Force on Triceps’ (tendon force), 

should have remained at zero Newtons through the whole experiment.  There is obviously a 

problem since the force reaches around 1750 Newtons. 

 Unfortunately, we were not able to come to any definitive conclusions by the end of the 

semester when this project came to an end.  Every time we ran the particle swarm, the tendon 

forces were all too high, indicating a problem with the program.  Hopefully these issues will be 

resolved in future projects. 



APPENDIX 1: MATLAB FILES FOR MOVEMENT OF ELBOW 

The information used to write this program in MatLab was gained from the thesis written by 

Doug Meador. 

 
function dy=elbow_Pen(t,y) 
global  neural 
dy=zeros(10,1); 
  
%This is the differential equation for the whole model. (pg 34) 
% 1 = Biceps and 2 = Triceps 
  
%constants 
m=1.43; 
l=.333; 
c=.165; 
I=.0575; 
M_m1=.432; 
B_m1=150; 
M_m2=.357; 
B_m2=150; 
T_act1=.01; 
beta1=.2; 
T_act2=.01; 
beta2=.2; 
 
J=m*(l-c)^2+I; 
  
dy(1)=y(2); 
dy(2)=(1/J)*(N(y(1))-r_1(y(1))*y(3)-r_2(y(1))*y(4)+M_p(y(1),y(2))); 
dy(3)=K_t1(y(3))*(v_tm1(y(1),y(2))-y(7)); 
dy(4)=K_t2(y(4))*(v_tm2(y(1),y(2))-y(8)); 
dy(5)=y(7); 
dy(6)=y(8); 
dy(7)=(1/M_m1)*(y(3)-(F_act1(y(9),y(5),y(7))+F_pe1(y(5))+B_m1*y(7))); 
dy(8)=(1/M_m2)*(y(4)-(F_act2(y(10),y(6),y(8))+F_pe2(y(6))+B_m2*y(8))); 
dy(9)=(-1/T_act1)*(beta1+(1-
beta1)*n_t1PS(t,neural(1),neural(2),neural(3)))*y(9)+(1/T_act1)*n_t1PS(t,neural(1),neural(2),neural(3)); 
dy(10)=(-1/T_act2)*(beta2+(1-
beta2)*n_t2PS(t,neural(4),neural(5),neural(6)))*y(10)+(1/T_act2)*n_t2PS(t,neural(4),neural(5),neural(6)); 
 

 
function dy=elbow_prior(t,y) 
global  tspan 
dy=zeros(10,1); 
  
%This is the differential equation for the whole model. (pg 34) 
% 1 = Biceps and 2 = Triceps 
  
%constants 
m=1.43; 



l=.333; 
c=.165; 
I=.0575; 
M_m1=.432; 
B_m1=150; 
M_m2=.357; 
B_m2=150; 
T_act1=.01; 
beta1=.2; 
T_act2=.01; 
beta2=.2; 
 
J=m*(l-c)^2+I; 
  
dy(1)=y(2); 
dy(2)=(1/J)*(N(y(1))-r_1(y(1))*y(3)-r_2(y(1))*y(4)+M_p(y(1),y(2))); 
dy(3)=K_t1(y(3))*(v_tm1(y(1),y(2))-y(7)); 
dy(4)=K_t2(y(4))*(v_tm2(y(1),y(2))-y(8)); 
dy(5)=y(7); 
dy(6)=y(8); 
dy(7)=(1/M_m1)*(y(3)-(F_act1(y(9),y(5),y(7))+F_pe1(y(5))+B_m1*y(7))); 
dy(8)=(1/M_m2)*(y(4)-(F_act2(y(10),y(6),y(8))+F_pe2(y(6))+B_m2*y(8))); 
dy(9)=(-1/T_act1)*(beta1+(1-beta1)*n_t1_old(t))*y(9)+(1/T_act1)*n_t1_old(t); 
dy(10)=(-1/T_act2)*(beta2+(1-beta2)* n_t2_old(t))*y(10)+(1/T_act2)* n_t2_old(t); 
 

 
function f=F_act1(a_1, l_m1, v_m1) 
  
%This is the activation force for the bicep. (pg 19) 
%For the equation to not equal 0, the muscle length must be between .075 and .225. 
%l_m1 and v_m1 are normalized in equations for f_l1 and f_v1. 
  
F_max1=1950; 
  
f=a_1*F_max1*f_l1(l_m1)*f_vC1(v_m1); 
 

 
function f=F_act2(a_2, l_m2, v_m2) 
  
%This is the activation force for the tricep. (pg 19) 
%For the equation to not equal 0, the muscle length must be between .051 and .153. 
%l_m2 and v_m2 are normalized in equations for f_l2 and f_v2. 
  
F_max2=2200; 
  
f=a_2*F_max2*f_l2(l_m2)*f_vC2(v_m2); 
 

 
 
 
 
 



function f=f_l1(l_m1) 
  
%This is the force-length equation for the bicep. (pg 88) 
%For the equation to not equal 0, the muscle length must be between .075 and .225. 
  
l_opt1=.15; 
  
nlm=l_m1/l_opt1; 
  
if (.5 <= nlm) & (nlm <= 1.5) 
    f=1-4*(nlm-1)^2; 
else 
    f=0; 
end; 
 

 
function f=f_l2(l_m2) 
  
%This is the force-length equation for the tricep. (pg 88) 
%For the equation to not equal 0, the muscle length must be between .051 and .153. 
  
l_opt2=.102; 
  
nlm=l_m2/l_opt2; 
  
if (.5 <= nlm) & (nlm <= 1.5) 
    f=1-4*(nlm-1)^2; 
else 
    f=0; 
end; 
 

 
function fpe=F_pe1(l_m1) 
  
%This is the passive force for the bicep. (pg 24) 
  
l_opt1=.15; 
  
nlm=l_m1/l_opt1; 
  
if (1 <= nlm) & (nlm <= 1.4) 
    fpe=0.00291621*(exp(13.1123*(nlm-1))-1); 
else if (nlm > 1.4) 
    fpe=7.25*nlm-9.6; 
else 
    fpe=0; 
end; 
end; 
 

 
 
 



function fpe=F_pe2(l_m2) 
  
%This is the passive force for the tricep. (pg 24) 
  
l_opt2=.102; 
  
nlm=l_m2/l_opt2; 
  
if (1 <= nlm) & (nlm <= 1.4) 
    fpe=0.00291621*(exp(13.1123*(nlm-1))-1); 
else if (nlm > 1.4) 
    fpe=7.25*nlm-9.6; 
else 
    fpe=0; 
end; 
end; 
 

 
function f=f_v1(v_m1) 
  
%This is the velocity force for the bicep. (pg 89) 
  
l_opt1=.15; 
v_max1=7*l_opt1; 
  
nvm=v_m1/v_max1; 
  
f=1+atan(1.5574*nvm); 
 

 
function f=f_v2(v_m2) 
  
%This is the velocity force for the tricep. (pg 89) 
  
l_opt2=.102; 
v_max2=7*l_opt2; 
  
nvm=v_m2/v_max2; 
  
f=1+atan(1.5574*nvm); 
 

 
function k=K_t1(F_t1) 
  
%This is the piecewise spring force coefficient for the bicep. (pg 23) 
  
F_max1=1950; 
l_ts1=.198; 
  
nFt=F_t1/F_max1; 
  
if (nFt < 0) 



    k=0; 
else if (0 <= nFt) && (nFt <= .5124) 
    k=(F_max1/l_ts1)*40.84209*(nFt+0.405671); 
else 
    k=(F_max1/l_ts1)*37.5; 
end; 
end; 
 

 
function k=K_t2(F_t2) 
  
%This is the piecewise spring force coefficient for the tricep. (pg 23) 
  
F_max2=2200; 
l_ts2=.1793; 
  
nFt=F_t2/F_max2; 
  
if (nFt < 0) 
    k=0; 
else if (0 <= nFt) && (nFt <= .5124) 
    k=(F_max2/l_ts2)*40.84209*(nFt+0.405671); 
else 
    k=(F_max2/l_ts2)*37.5; 
end; 
end; 
 

 
function m=M_p(th, vth) 
  
%This is the passive moment. (pg 27) 
%I used the constants from pg 96 in his Mpf equation. 
%c is different in this equation than it is for the whole DE. 
  
%I got the constants th_min and th_max from pg 28. 
  
k_1=10; 
k_2=25; 
k_3=1; 
k_4=25; 
th_min=-3*pi/10; 
th_max=pi/2; 
c=.7; 
  
m=k_1*exp(-k_2*(th-th_min))-k_3*exp(-k_4*(th_max-th))-c*vth; 
 

 
 
 
 
 
 



function n=N(th) 
  
%This is part of dy(2). (pg 32) 
%M_w stands for the weight of a mass that a person would be holding. 
%This paper used both 0 kg and 5 kg for the M_w, so I have tested with both. 
  
m=1.43; 
l=.333; 
c=.165; 
g=9.81; 
M_w=5; 
  
n=m*(l-c)*g*cos(th)+M_w*l*g*cos(th); 
 

 
function n=n_t1_old(t) 
  
%This determines the step-input function for neural innervation - lateral rectus 
%Initial equilibrium innervation of 12%, then 100%, finally new equilibrium of 10% 
  
t_i=0; 
t_1=0.1; 
t_2=0.10000001; 
t_3=0.3; 
t_4=0.30000001; 
  
n_1=0; 
n_2=1; 
n_3=0; 
  
k_1=(n_2 - n_1)/(t_2 - t_1); 
k_2=(n_3 - n_2)/(t_4 - t_3); 
  
if (t_i <= t) && (t <= t_1) 
   n=n_1; 
else if (t_1 < t) && (t < t_2) 
   n=k_1*(t - t_2) + n_2; 
else if (t_2 <= t) && (t <= t_3) 
   n=n_2; 
else if (t_3 < t) && (t < t_4) 
   n=k_2*(t - t_4) + n_3; 
else 
   n=n_3; 
end; 
end; 
end; 
end; 

 
 
 
 
 



function n=n_t1PS(t) 
  
%This determines the step-input function for neural innervations - lateral rectus 
%Initial equilibrium innervations of 12%, then 100%, finally new equilibrium of 10% 
  
t_i=0; 
t_1=0.1; 
t_2=0.10000001; 
t_3=0.3; 
t_4=0.30000001; 
n_1=0.4430; 
n_2=0.1411; 
n_3=0.3777; 
k_1=(n_2 - n_1)/(t_2 - t_1); 
k_2=(n_3 - n_2)/(t_4 - t_3); 
  
if (t_i <= t) && (t <= t_1) 
   n=n_1; 
else if (t_1 < t) && (t < t_2) 
   n=k_1*(t - t_2) + n_2; 
else if (t_2 <= t) && (t <= t_3) 
   n=n_2; 
else if (t_3 < t) && (t < t_4) 
   n=k_2*(t - t_4) + n_3; 
else 
   n=n_3; 
end; 
end; 
end; 
end; 
 

 
function n=n_t2_old(t) 
  
%This determines the step-input function for neural innervations - triceps 
%Initial equilibrium innervations of 12%, then 2%, finally new equilibrium of 10% 
  
t_i=0; 
t_1=0.1; 
t_2=0.10000001; 
t_3=0.3; 
t_4=0.30000001; 
 
n_1=0; 
n_2=0;  
n_3=0;  
  
k_1=(n_2 - n_1)/(t_2 - t_1); 
k_2=(n_3 - n_2)/(t_4 - t_3); 
 
if (t_i <= t) && (t <= t_1) 
   n=n_1; 



else if (t_1 < t) && (t < t_2) 
   n=k_1*(t - t_2) + n_2; 
else if (t_2 <= t) && (t <= t_3) 
   n=n_2; 
else if (t_3 < t) && (t < t_4) 
   n=k_2*(t - t_4) + n_3; 
else 
   n=n_3; 
end; 
end; 
end; 
end; 
 

 
function n=n_t2PS(t) 
  
%This determines the step-input function for neural innervations - triceps 
%Initial equilibrium innervations of 12%, then 2%, finally new equilibrium of 10% 
  
t_i=0; 
t_1=0.1; 
t_2=0.10000001; 
t_3=0.3; 
t_4=0.30000001; 
n_1=0.0761; 
n_2=0.3057; 
n_3=0.1460; 
k_1=(n_2 - n_1)/(t_2 - t_1); 
k_2=(n_3 - n_2)/(t_4 - t_3); 
  
if (t_i <= t) && (t <= t_1) 
   n=n_1; 
else if (t_1 < t) && (t < t_2) 
   n=k_1*(t - t_2) + n_2; 
else if (t_2 <= t) && (t <= t_3) 
   n=n_2; 
else if (t_3 < t) && (t < t_4) 
   n=k_2*(t - t_4) + n_3; 
else 
   n=n_3; 
end; 
end; 
end; 
end; 
 

 
function r=r_1(th) 
  
%This is the moment arm equation for the bicep. (pg 29) 
  
r=(pi/180)*((-2.9883*10^(-8))*((180/pi)*(pi/2-th))^3+(1.8047*10^(-6))*((180/pi)*(pi/2-th))^2+(4.5322*10^(-
4))*((180/pi)*(pi/2-th))+0.014660); 



function r=r_2(th) 
  
%This is the moment arm equation for the triceps. (pg 29) 
  
r=(pi/180)*((-3.5171*10^(-12))*((180/pi)*(pi/2-th))^5+(13.277*10^(-10))*((180/pi)*(pi/2-th))^4+(-
19.092*10^(-8))*((180/pi)*(pi/2-th))^3+(12.886*10^(-6))*((180/pi)*(pi/2-th))^2+(-3.0284*10^(-
4))*((180/pi)*(pi/2-th))-0.023287); 
 

 
function solver 
  
global tspan 
  
%tspan is vector of times equation will be solved for [initial time: timestep: final time] 
%Y0 is vector of initial conditions Y1(0)=? and Y2(0)=?, etc... 
%Page 37 lets us know that the function is EXTREMELY sensitive to initial conditions. 
%I got these initial conditions from page 36. 
  
tspan=[0:0.01:3]; 
  
Y0=[0; 0; 0; 0; .1248828696; .110530630185; 0; 0; 0; 0]; 
  
[t,Y]=ode45(@elbow_prior, tspan, Y0); 
  
subplot(2,2,1); plot(t,Y(:,1)) 
subplot(2,2,2); plot(t,Y(:,2)) 
subplot(2,2,3); plot(t,Y(:,3)) 
subplot(2,2,4); plot(t,Y(:,4)) 
  
Fitness_Pen(Y(:,3), Y(:,4), Y(:,1)) 
 

 
function v=v_tm1(th, vth) 
  
%This is the velocity for the total muscle length of the bicep. 
%This was derived by hand from the equation on pg 89. 
  
v=(-4*vth*(5.2156*10^(-10))*((180/pi)*(pi/2-th))^3 + 3*vth*(3.1498*10^(-8))*((180/pi)*(pi/2-th))^2 + 
2*vth*(7.9101*10^(-6))*((180/pi)*(pi/2-th)) + vth*2.5587*10^(-4)); 
 

 
function v=v_tm2(th, vth) 
  
%This is the velocity for the total muscle length of the tricep. 
%This was derived by hand from the equation on pg 90. 
  
v=-6*vth*(6.1385*10^(-14))*((180/pi)*(pi/2-th))^5 + 5*vth*(2.3174*10^(-11))*((180/pi)*(pi/2-th))^4 - 
4*vth*(3.3321*10^(-9))*((180/pi)*(pi/2-th))^3 + 3*vth*(2.2491*10^(-7))*((180/pi)*(pi/2-th))^2 – 
2*vth*(5.2856*10^(-6))*((180/pi)*(pi/2-th)) – vth*(4.0644*10^(-4)); 
 

 



APPENDIX 3: MATLAB FILES FOR PARTICLE SWARM 

The information used to write this program in MatLab was gained from the Swarm 

Intelligence website.  We used two programs to test the model for the Particle Swarm, and both 

models are shown below. 

 
function [PS,PSF]=Particle_Swarm_Elbow 
global  neural 
 
%n is the number of particles we will be using 
%m is the number of variables we will be using (we will probably use 6) 
 
clear 
n = 1; 
m = 6; 
w = 0.9; 
c1 = 2; 
c2 = 2; 
V_min=-124.54; 
V_max=124.54; 
LocalBestX=zeros(n,m);  
GlobalBestX=zeros(m); 
fitnessX=zeros(n); 
  
for i=1:1:n 
for j=1:1:m 
    N(i,j)=random('unif',-147,0); 
    X(i,j)=1/(1 + exp(-N(i,j)/32)); 
    V(i,j)=random('unif',-124.54,124.54); 
end; 
end; 
  
%initialize the global and local fitness to the worst possible values 
  
GlobalBestFitness=8*10^30; 
  
for i=1:1:n 
    LocalBestFitness(i)=8*10^30; 
end; 
  
 %loop until convergence, and we will initially chose a finite number of 
%iterations 
  
for k=1:1:1  %Put number of interations of particle swarm here!!!! 
     
    for i=1:1:n 
 
%Now it is time to solve the ODE for the elbow. 
 
 
 



%____________________________________________________________________ 
  
tspan=[0:0.01:0.5]; 
  
Y0=[pi/2; 0; 12; 12; .1248828696; .110530630185; 0; 0; X(i,1); X(i,4)]; 
neural=X(i,:); 
[t,Y]=ode45(@elbow, tspan, Y0); 
 
%____________________________________________________________________ 
  
        fitnessX(i)=Fitness(1,Y(:,3), Y(:,4)) 
    end; 
    for i=1:1:n 
        if (fitnessX(i) < LocalBestFitness(i)) 
            LocalBestFitness(i)=fitnessX(i); 
            LocalBestX(i,:)=X(i,:); 
        end; 
    end; 
    for i=1:1:n 
        if (LocalBestFitness(i) < GlobalBestFitness) 
            GlobalBestFitness=LocalBestFitness(i); 
            GlobalBestX=X(i,:); 
        end; 
    end; 
    for i=1:1:n 
        for j=1:1:m 
            r1=random('unif',0,1); 
            r2=random('unif',0,1); 
            V(i,j)=w*V(i,j) + c1*r1*(LocalBestX(i,j) - X(i,j)) + c2*r2*(GlobalBestX(j) - X(i,j)); 
%This if-then statement ensures that the particles do not wander off to far from a 
%good velocity. 
            if (V(i,j) > V_max) 
                V(i,j)=V_max; 
            else if (V(i,j) < V_min) 
                V(i,j)=V_min; 
            else 
                V(i,j)=V(i,j); 
            end; 
            end; 
            N(i,j)=X(i,j) + V(i,j); 
            X(i,j)=1/(1 + exp(-N(i,j)/32)) 
        end; 
    end; 
end; 
  
PS=GlobalBestX 
PSF=GlobalBestFitness 
 

 

 



function [PS,PSF]=Particle_Swarm_Elbow_Pen 
  
clear all 
  
%n is the number of particles we will be using 
%m is the number of variables we will be using (we will probably use 6) 
  
n = 50; 
m = 6; 
w = 0.9; 
c1 = 2; 
c2 = 2; 
V_min=-124.54; 
V_max=124.54; 
LocalBestX=zeros(n,m);  
GlobalBestX=zeros(m); 
fitnessX=zeros(n); 
  
for i=1:1:n 
for j=1:1:m 
    N(i,j)=random('unif',-147,0); 
    X(i,j)=1/(1 + exp(-N(i,j)/32)); 
    V(i,j)=random('unif',-124.54,124.54); 
end; 
end; 
  
%initialize the global and local fitness to the worst possible values 
  
GlobalBestFitness=8*10^30; 
  
for i=1:1:n 
    LocalBestFitness(i)=8*10^30; 
end; 
  
%loop until convergence, and we will initially chose a finite number of 
%iterations 
  
for k=1:1:50  %Put number of interations of particle swarm here!!!! 
     
%Now it is time to solve the ODE for the elbow. 
 
%____________________________________________________________________ 
  
tspan=[0:0.01:3]; 
  
Y0=[0; 0; 0; 0; .1248828696; .110530630185; 0; 0; X(i,1); X(i,4)]; 
global neural 
neural=X(i,:); 
[t,Y]=ode45(@elbow, tspan, Y0); 
%____________________________________________________________________ 
  
    for i=1:1:n 
        fitnessX(i)=Fitness_Pen(Y(:,3), Y(:,4), Y(:,1)); 



    end; 
    for i=1:1:n 
        if (fitnessX(i) < LocalBestFitness(i)) 
            LocalBestFitness(i)=fitnessX(i); 
            LocalBestX(i,:)=X(i,:); 
        end; 
    end; 
    for i=1:1:n 
        if (LocalBestFitness(i) < GlobalBestFitness) 
            GlobalBestFitness=LocalBestFitness(i); 
            GlobalBestX=X(i,:); 
        end; 
    end; 
    for i=1:1:n 
        for j=1:1:m 
            r1=random('unif',0,1); 
            r2=random('unif',0,1); 
            V(i,j)=w*V(i,j) + c1*r1*(LocalBestX(i,j) - X(i,j)) + c2*r2*(GlobalBestX(j) - X(i,j)); 
%This if-then statement ensures that the particles do not wander off to far from a 
%good velocity. 
            if (V(i,j) > V_max) 
                V(i,j)=V_max; 
            else if (V(i,j) < V_min) 
                V(i,j)=V_min; 
            else 
                V(i,j)=V(i,j); 
            end; 
            end; 
            X(i,j)=X(i,j) + V(i,j); 
            X(i,j)=1/(1 + exp(-X(i,j)/32)); 
        end; 
    end; 
end; 
  
subplot(2,2,1); plot(t,Y(:,1)) 
subplot(2,2,2); plot(t,Y(:,2)) 
subplot(2,2,3); plot(t,Y(:,3)) 
subplot(2,2,4); plot(t,Y(:,4)) 
  
PS=GlobalBestX 
PSF=GlobalBestFitness 
 



APPENDIX 2: MATLAB FILES FOR FITNESS FUNCTION 

The information used to write this program in MatLab was gained from the thesis written by 

Collin Witherspoon.  We used two fitness functions in conjunction with the two Particle Swarm 

programs to test different theories. 

 
function F=Fitness(t, Ft_bic, Ft_tri) 
global tspan 
  
%This is our fitness function related to muscle stress. 
 
k=length(tspan); 
Ft_bic=zeros(k);  
Ft_tri=zeros(k);  
A_bic=.0005;  %This is an approximate value for the cross-sectional area of the bicep. 
A_tri=.0008;  %This is an approximate value for the cross-sectional area of the triceps. 
F=zeros(k); 
 
F(1)=0;  
p_hat(t,tspan) 
for j=1:1:p_hat(t,tspan) 
    F(j+1) = F(j)+(Ft_bic(j+1)/A_bic)^3 + (Ft_tri(j+1)/A_tri)^3; 
end; 
 

 
function F=Fitness_Pen(Ft_bic, Ft_tri, theta) 
global tspan 
  
%This is our fitness function related to muscle stress. 
 
k=length(tspan); 
 
A_bic=.0005;  %This is an approximate value for the cross-sectional area of the bicep. 
A_tri=.0008;  %This is an approximate value for the cross-sectional area of the triceps. 
F=zeros(k); 
 
theta_actual=[theta(1); theta(11); theta(12); theta(31); theta(32); theta(51)];  
theta_desired=[0; 0; 0; pi/2; pi/2; pi/2]; 
  
angle_fitness=10^30*sum((theta_actual-theta_desired).^2); 
F = sum((Ft_bic/A_bic).^3 + (Ft_tri/A_tri).^3) + angle_fitness; 
 

 
function p=p_hat(t,time_partition)  
  
k=length(time_partition); 
p=0; 
sum=0;  
for j=1:1:k 
    p=sum+q(t,time_partition(j));  



    sum=p;  
end; 
 

 
function q=q(t,part) 
  
if t>=part  
    q=1; 
else  
    q=0;  
end; 
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