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1. Introduction
The question is often asked, “Why do Maxwell's equations contain eight scalar equations if there are 
only six unknowns? Aren't some of the equations redundant, and if not, isn't the problem over-
specified?” This paper attempts to answer this question. The short answer is that Maxwell's equations 
are neither redundant nor over-specified because only six of Maxwell's equations are dynamical. The 
other two can be thought of as initial conditions. Note that although not typically written down 
explicitly as part of Maxwell's equations, boundary conditions are also considered part of the system. 
Maxwell's equations in their complete form involve six linear partial differential equations, six 
unknowns, initial conditions and boundary conditions and therefore they have a unique solution 
according to traditional theorems of linear algebra. 

2. Definitions
Let us first make some definitions and dispel common misconceptions. The following analysis focuses 
on Maxwell's equations in vacuum. Including the effects of materials would complicate the analysis 
without changing the core arguments. In modern vector notation and in SI units, Maxwell's equations in 
vacuum are:

∇⋅E=
ρ
ϵ0

 ∇⋅B=0

  Maxwell's equations in vacuum in SI units
∇×E=−∂B

∂ t
∇×B=μ0 J+μ0 ϵ0

∂ E
∂ t

Here, E is the total electric field, B is the total magnetic field, ρ is the electric charge density, J is the 
electric current density, ϵ0 is the permittivity in free space, μ0 is the permeability of free space, ∇⋅() is 
the divergence operator, and ∇×() is the curl operator. We omit hypothetical magnetic charges and 
magnetic currents as they have little bearing on the known universe and only unnecessarily complicate 
the analysis without changing the core arguments.

The six unknowns to be found are the components of the electromagnetic field:

Ex, Ey, Ez, Bx, By, Bz               The six unknowns (dependent variables) of Maxwell's equations

They are not numbers to be found as in linear algebra, rather they are functions of x, y, z, and t that need 
to be determined. In the language of differential calculus, these six unknowns are dependent variables 
which depend on the four independent variables:

x, y, z, t   The independent variables of Maxwell's equations

When solving differential equations, we consider a solution to be unique when there is one and only 
one functional form that we can write down for each dependent variable and this functional form 



includes only known constants and independent variables, but no dependent variables or derivatives. 
The charge density and current density are not unknowns in this modern condensed form. If they were, 
then everything would be unknown and there would be nothing to solve. Charges and currents create 
fields; the charges and currents are the sources. (Historically, Maxwell's original work treated the 
charges and currents as unknowns, but he also included extra equations which effectively turned them 
into knowns.)

The beginner student may look at Maxwell's equations and think there are only four equations and six 
unknowns, and therefore the problem is underspecified. From a physical standpoint, Maxwell's 
equations are four equations constituting four separate laws: Coulomb's law, the Maxwell-Ampere law, 
Faraday's law, and the no-magnetic-charge law. But from a mathematical standpoint, there are eight 
equations because two of the physical laws are vector equations with multiple components. In 
component form in rectangular coordinates, the full eight equations are:
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We therefore seem to have eight independent equations in six unknowns and the problem seems to be 
over-specified (or redundant) according to linear algebra. The eager student may quickly reply that 
perhaps Maxwell's equations are non-linear. But a perusal of the above equations reveals that each term 
involves a single dependent variable raised to the power of one, and therefore the system is linear. In 
theory, because the system is linear, we can decouple all of the equations and end up with each equation 
containing only one dependent variable. This is in fact what happens when Maxwell's equations are put 
in wave-equation form, as is done later. 

In differential calculus, two distinct layers of information must be present in order to have a completely 
unique solution: (1) sufficient differential equations to determine the dependent variables, and (2) 
sufficient boundary conditions to determine the integration constants. The term “boundary conditions” 
used here includes initial conditions, as initial conditions can be thought of as conditions on the 
boundary of time. If the system is linear, as is true for Maxwell's equations, the differential equations 
are sufficient for a unique solution if the number of equations equals the number of unknowns, and if 
all the equations are linearly dependent. The boundary conditions are sufficient for a unique solution if 
the number of known boundary conditions equals the number of dependent variables times the number 
of independent variables times the order of the differential equations, and if the boundary conditions 
are not ill-posed mathematically. This number can be understood from the fact that every time we 
integrate away a derivative operator, we introduce an integration constant that must be determined 
using boundary conditions.

In Maxwell's equations, we have first-order differential equations, six dependent variables, and four 
independent variables. We therefore need 24 boundary conditions for a unique solution. Note that in 

Maxwell's equations 
in component form



most physics problems, it does not seem like we have 24 boundary conditions because of the presence 
of symmetries or trivial boundary conditions. For instance, if we are doing an electrostatic problem, 12 
of the boundary conditions are trivially zero because there are no magnetic fields present. 

The issue of sufficient boundary conditions is a concern only during the application of Maxwell's 
equations to a specific situation, but does not concern the Maxwell's equations themselves. For the 
purposes of our analysis, we assume that the student knows how to properly construct and apply 
boundary conditions to arrive at a unique solution. We can therefore safely ignore boundary condition 
considerations from here on and focus on the other layer: the presence of a sufficient number of 
differential equations to determine the dependent variables. If Maxwell's equations are sufficient for a 
unique solution but not over-specified, we would expect six equations in six unknowns, plus 
appropriate boundary/initial conditions.

3. The Uniqueness of Maxwell's Equations in Standard Form
According to the Helmholtz decomposition theorem (the fundamental theorem of vector calculus) 
every well-behaved vector field A can be decomposed into a sum of a transverse vector field and a 
longitudinal vector field:

A=At+A l where ∇×A=∇×At  (so that ∇×Al=0 ) and ∇⋅A=∇⋅A l  (so that ∇⋅At=0 )

The transverse part At is a curling (i.e. solenoidal, rotational, non-diverging) vector field. The 
longitudinal part is Al  is a diverging (i.e. irrotational, non-curling) vector field. The Helmholtz 
decomposition theorem arises from the fact that the divergence operator and the curl operator can be 
thought of as orthogonal operators. This is because the curl of the gradient is always zero, ∇×∇Φ=0
and the divergence of the curl is always zero, ∇⋅(∇×D)=0 . Note that the terms “longitudinal” and 
“transverse” refer to the directionality of the operators, and not necessarily the directionality of the 
vectors. In other words, At is the component that results when the transverse differential (the curl) is 
taken, it is not the component that is always transverse to some reference vector.

Note that there is another part to the vector field that is both non-curling and non-diverging. If a vector 
field has zero divergence and zero curl, it can still have something else left called the relaxed part (or 
the Laplacian part). It is called the relaxed part because charges and currents are what create diverging 
and curling fields, so in their absence the fields relax to a state that minimizes potential energy while 
still meeting all boundary conditions. The relaxation method is a common numerical method for 
finding the relaxed state of any vector field. We can show the relaxed nature mathematically. If any 
vector field A is non-curling, ∇×A=0 , then because of the mathematical identity ∇×∇Φ=0 we 
must have A=−∇Φ . If the vector field is also non-diverging, ∇⋅A=0 , then upon inserting the 
negative gradient of the scalar field, we find ∇2 Φ=0 . This is the Laplace equation and the solutions to 
this equation are the relaxed part of A. Imagine stretching a rubber sheet and fixing it to an irregularly 
shaped rim. It's final shape is a minimal surface analogous to the relaxed state of a vector field. Thus 
we see that even if a vector field is non-curling and non-diverging, it can still have a non-zero and non-
trivial functionality. The relaxed part of a vector field is contained in At and Al as should be obvious 
from the above analysis. The relaxed part is determined solely by boundary conditions. For this reason, 
we can assume boundary conditions are properly applied so that the relaxed parts are uniquely 
determined without going into any more detail.

We can expand the electric and magnetic fields in Maxwell's equations into their longitudinal and 
transverse components in order to attempt to better analyze the role of each equation and whether there 



is redundancy. We expand the fields according to: 

E=Et+El and B=Bt+Bl

Inserting these expansions into Maxwell's equations and dropping terms that are identically zero (such 
as ∇⋅Et=0 ), they become:

(1) ∇⋅El=
ρ
ϵ0

 (2) ∇⋅Bl=0

(3) ∇×Et=−
∂Bt

∂ t
−

∂Bl

∂ t
(4) ∇×Bt=μ0 J+ 1

c2

∂Et

∂ t
+ 1

c2

∂El

∂ t

Taking the divergence of equations (3) and (4) and using the continuity equation, ∇⋅J=− ∂ρ
∂ t ,we arrive 

at the modified forms of these equations:

(3')
∂
∂ t (∇⋅Bl )=0 (4')

∂
∂ t (∇⋅El )=

∂
∂ t ( ρ

ϵ0)
Upon comparing equations (3') and (4') to equations (2) and (1) respectively, they may seem to be 
identical. In other words, equations (1) and (2) of Maxwell's equations seem to be redundant because 
they are already contained in equations (3) and (4) as made clear in their modified form shown in 
equations (3') and (4'). Equations (3) and (4), which are Faraday's law and the Maxwell-Ampere law, 
constitute six equations in six unknowns, so it makes sense that equations (1) and (2) - Coulomb's law 
and the no-magnetic-charge law - could be redundant. So why are Coulomb's law and the no-magnetic-
charge law always included as part of Maxwell's equations?

The answer is that they are not redundant, and the reason why is because equation (3') does not exactly 
match equation (2) and equation (4') does not exactly match equation (1). The presence of the time 
derivative makes all the difference. Equations (3') and (4') do not tell us the longitudinal components of 
the electric and magnetic fields, they only tell as the time-evolution of the longitudinal components of 
the fields. We still need equations (1) and (2) in order to find the initial longitudinal components. So 
Coulomb's law and the no-magnetic-charge law are not redundant. 

The subtle effect of the time-derivatives contained in equations (3') and (4') can be made clearer by 
integrating them away. We have to be careful because when we integrate, we have to remember to 
include the integration constant. But because it is a partial derivative, the integration constant is not a 
pure constant, it is only constant with respect to time. It could still be a function of the other dependent 
variables. Upon integrating equations (3') and (4'), we find that Faraday's law and the Ampere-Maxwell 
law only contain the information:

(3'') ∇⋅Bl= f ( x , y , z ) (4'') ∇⋅El=
ρ
ϵ0

+g (x , y , z)

where f and g are unknown functions. Comparing equations (3'') and (4'') to equations (1) and (2) we 
see that there is no redundancy after all. We need Coulomb's law and the no-magnetic-charge law in 
order to determine the functions f and g (even though they end up being zero). The fact that general 



conceptual arguments can tell us that f and g above are zero, or the fact that the first two of Maxwell's 
equations tell us that f and g are zero may confuse some people into thinking that the other Maxwell 
equations, (3) and (4), tell us that f and g are zero. This would imply redundancy. But from a 
mathematical perspective, Faraday's law and the Ampere-Maxwell law do not uniquely specify the 
divergence of the fields, and thus there is no redundancy.

If Maxwell's equations are not redundant, then they seem to be over-specified because we still have 
eight equations in six unknowns. But Maxwell's equations are not over-specified and the reason is 
because equations (1) and (2) do not really count as part of the system of linear equations – they count 
only as initial conditions. They are needed to uniquely determine a solution, but they are needed only 
as initial conditions and not as part of the system of linear independent differential equations. Once (1) 
and (2) are used to find the initial state of the longitudinal components of the fields, then equations (3) 
and (4) dictate the time evolution of the longitudinal components at all future times, as made explicit in 
equations (3') and (4'). 

The time evolution of the longitudinal components turns out being statically linked. (That is, the 
divergence of the longitudinal electric field is linked to the charge density at all times in the same way 
it was initially linked. The relationship is static, but El itself is not static. The quantity ∇⋅El  
instantaneously tracks the charge density. Some books calls this pseudo-static.) But the static behavior 
does not change the mathematical arguments that equations (3) and (4) are a complete description of 
the dependent variables, including the dynamical evolution of the longitudinal components, and 
equations (1) and (2) are merely initial conditions. Because the dynamical behavior of the longitudinal 
components is static, the initial values for the longitudinal components end up being the same values 
through all time. As a result, Coulomb's law (1) and the no-magnetic-charge law (2) end up being valid 
for all time and not just at an initial time. But this is just a quirk of the physics because their dynamical 
evolution is static, and is not a mathematical paradox. Perhaps for this reason, Coulomb's law and the 
no-magnetic-charge law are often incorrectly elevated to be considered part of the system of 
differential equations in a linear-algebra sense, when they should only be regarded as boundary 
conditions in time.

In summary, Maxwell's equations are neither over-specified (six equations in six unknowns), nor are 
they redundant (the divergence equations are needed for a unique solution) when we recognize 
Coulomb's law and the no-magnetic-charge law as boundary conditions in time.

Strictly speaking, equation (2) does not fully specify Bl, it only specifies the diverging part. There is 
still a relaxed part that is determined by boundary conditions. This means that equations (3') and (2) do 
not doom Bl to be initially and forevermore zero. They only doom the ∇⋅Bl  to be once and 
forevermore zero. The relaxed part of Bl can still be non-zero and can even change in time. For 
instance, the magnetic field inside an ideal, infinite solenoid is non-curling and non-diverging, but is 
still real and non-zero, and can even change in time as we change the current in the solenoid. This 
subtlety is partly what keeps causality from being violated. 

Consider if at some time t0 we “turn on” a point electric charge q that was not there before and leave it 
on. Static point charges create the pseudo-static (i.e. instantaneous) divergence of the longitudinal 
electric field El according to (1) and (4'). I might therefore conclude that at the exact moment I turn on 
q, a man on the moon can detect its longitudinal field. This would clearly violate causality. The error in 
our reasoning is that we assumed El is instantaneous, when clearly equation (4') only specifies that
∇⋅El is statically and therefore instantaneously linked to the charge density. The quantity ∇⋅El is not 



an independent physical quantity we can measure. We can only measure and give physical reality to the 
total field E. Therefore causality is not violated. If we worked out the mathematics of a point charge 
turning on, we would find that there are terms in the dynamical equations that cancel the seeming 
instantaneous fields beyond the causality shell. For a good exposition of how causality is not violated 
despite Coulomb's law seeming to be instantaneous, see J. D. Jackson, Eur. J. Phys. 31 L79 (2010).

4. Uniqueness of the Wave Form of Maxwell's Equations
We can cast Maxwell's equations into a wave form. Take Ampere's law and take the partial derivative 
with respect to time on both sides:

∇×(∂B
∂ t )=μ0

∂ J
∂ t

+μ0 ϵ0
∂2 E
∂ t 2

Faraday's Law specifies the partial of B with respect to t, so we can insert it into this equation to find:

∇×(∇×E)=−μ0
∂ J
∂ t

−μ0 ϵ0
∂2 E
∂ t 2

Using the vector identity ∇×(∇×A)=∇(∇⋅A)−∇ 2 A , this becomes:

∇(∇⋅E)−∇ 2 E=−μ0
∂ J
∂ t

−μ0 ϵ0
∂2 E
∂ t 2

The divergence of E is specified by Coulomb's law, so we can insert it in to find:

∇2 E− 1
c2

∂2 E
∂ t 2 = 1

ϵ0
∇ρ+μ0

∂ J
∂ t

This is a differential equation involving only E and known sources. The electric field has been 
mathematically decoupled from the magnetic field. Because we inserted Coulomb's law, we may be 
tempted to say that this equation contains Coulomb's law and therefore Coulomb's law by itself has 
become redundant. In fact, based on the way we inserted it, this equation only contains the gradient of 
Coulomb's law. We therefore still need Coulomb's law for a complete solution.

We can do the same thing for the magnetic field. Start with Faraday's law and take the partial derivative 
with respect to time on both sides:

∇×E=−∂B
∂ t

∇×(∂ E
∂ t )=−∂2 B

∂ t 2

The partial of E is found in the Ampere-Maxwell law, so we can insert it into this equation to find:



∇×∇×B=μ0 ∇×J− 1
c2

∂2 B
∂ t 2

Again, using the vector identity ∇×(∇×A)=∇(∇⋅A)−∇ 2 A , this becomes:

∇(∇⋅B)−∇ 2 B=μ0 ∇×J− 1
c2

∂2 B
∂ t 2

The divergence of B is specified to be zero by the no-magnetic-charge law, so that we end up with:

∇2 B− 1
c2

∂2 B
∂ t 2 =−μ0 ∇×J

This is a differential equation involving only B and known sources. The magnetic field has been 
mathematically decoupled from the electric field. Because we inserted the no-magnetic-charge law, we 
may be tempted to say that this equation contains that law and therefore the no-magnetic-charge law 
has become redundant. In fact, based on the way we inserted it, this equation only contains the gradient 
of the no-magnetic-charge law. We therefore still need the no-magnetic-charge law for a complete 
solution.

In summary, Maxwell's equations in wave-equation form are:

∇⋅E=
ρ
ϵ0

 ∇⋅B=0

  

∇2 E− 1
c2

∂2 E
∂ t 2 = 1

ϵ0
∇ρ+μ0

∂ J
∂ t

∇2 B− 1
c2

∂2 B
∂ t 2 =−μ0 ∇×J

We have to include the first two equations to get a unique solution for the same reason as in the original 
form. Again, the first two equations serve as initial conditions and the second two represent six linear 
differential equations in six unknowns. This form is fully equivalent to the original form. Changing 
Maxwell's equations to this form does not reduce the number of unknowns and does not reduce the 
number of physically relevant equations. What it does accomplish is it completely decouples all of the 
dependent variables. Each of the six dynamical differential equations now contains one and only one 
dependent variable (a field component). The decoupling is what makes the wave-equation form of 
Maxwell's equations so desirable, not the fact that we have reduced the number of unknowns or the 
number of equations.

Expanding the fields in Maxwell's equations into longitudinal and transverse components exactly as we 
did previously, we find:

Maxwell's equations in 
wave-equation form



(5) ∇⋅El=
ρ
ϵ0

 (6) ∇⋅Bl=0

  

(7) ∇(∇⋅El)−∇×(∇×Et)−
1
c2

∂2 El

∂ t2 − 1
c2

∂2 Et

∂ t 2 = 1
ϵ0

∇ρ+μ0
∂ J
∂ t

(8) ∇(∇⋅Bl)−∇×(∇×Bt)−
1
c2

∂2 Bl

∂ t2 − 1
c2

∂2 Bt

∂ t 2 =−μ0 ∇×J

Take the divergence of the last two equations and, using the continuity equation, ∇⋅J=− ∂ρ
∂ t , we find 

modified forms of these equations:

(7') (∇2− 1
c2

∂2

∂ t 2 )(∇⋅El−
ρ
ϵ0

)=0  (8') (∇2− 1
c2

∂2

∂ t 2 )(∇⋅Bl)=0

Comparing equations (7') and (8') to equations (5) and (6), we again see that the dynamical equations 
(7) and (8) seem to contain the divergence equations, but they in fact only contain derivatives of the 
divergence equations. Even though equations (5) and (6) are only initial conditions, we still need them 
in order to find a unique solution. We can see this by integrating away the wave-operator:

(7'') ∇⋅El=
ρ
ϵ0

+∫ P(k)e i k⋅x−i c k t d 3k  (8'') ∇⋅Bl=∫Q (k)e i k⋅x−i ck t d 3 k

Comparing equations (7'') and (8'') to equations (5) and (6), we see that we need equations (5) and (6), 
the initial conditions, to determine that there are no extra terms in (7'') and (8'')

5. Uniqueness of the Potentials Form of Maxwell's Equations
Another form of Maxwell's equations can be found by defining potentials. Instead of using some prior 
knowledge of Maxwell's equation to take shortcuts as is traditionally done, let us start as general as 
possible and let the facts fall out along the way so that we can keep track of the number of unknowns 
and the number of independent dynamical differential equations. The magnetic field and electric field 
have curling parts and diverging parts. We can also explicitly write out a time-derivative part in order to 
match traditional potential definitions even though Helmholtz's theorem does not require it. The time-
derivative term may also have a curling or diverging nature. These parts are defined in terms of 
potentials:

B=∇×AB−∇ΦB−
∂A 'B
∂ t

and E=∇×AE−∇ΦE−
∂A 'E
∂ t

At this point the potentials AB, AE, A'B, A'E, ΦB, and ΦE are all independent and unknown. We therefore 
have 14 unknowns and need 14 independent linear dynamical differential equations to find a unique 
solution. But Maxwell's equations only contain six dynamical equations in six unknowns. By 
introducing more unknowns through our definition, we must also introduce more equations to ensure 
uniqueness. We are free to choose any new equations we want because they will have no impact on the 
physics as expressed in the electric and magnetic fields. 

Inserting these expansions into Maxwell's equations in vacuum, we find:



∇2 ΦE+
∂
∂ t

∇⋅A 'E=−
ρ
ϵ0

 

∇2 ΦB+
∂
∂ t

∇⋅A 'B=0

∇(∇⋅AE)−∇ 2 AE−
∂
∂ t

∇×A 'E=− ∂
∂ t

∇×AB+
∂
∂ t

∇ΦB+
∂2 A 'B
∂ t 2

∇(∇⋅AB)−∇2 AB−
∂
∂ t

∇×A 'B=μ0 J+ 1
c2

∂
∂ t

∇×AE−
1
c2

∂
∂ t

∇ΦE−
1
c2

∂2 A 'E
∂ t 2

We now have eight equations and 14 unknowns. The first two equations can no longer be considered 
initial conditions because of the presence of the time derivative. We added the extra unknowns 
externally through our definition, so we are free (and required) to add any extra equations we want to in 
order to get a unique solution. Our choice of additional equations will have no effect on the end form of 
the E and B fields or on the physics, because extra unknowns are purely an artifact of the way we 
defined the potentials. For a unique solution, we need more initial/boundary condition equations, and 6 
more dynamical equations (14 total minus the 8 already present) to add to the system of linear 
equations. There is no “right” set of equations to add, as they all lead to the same physical results. Note 
that some of the equations become trivially satisfied, so that one is tempted to discard them. But in the 
interest of having n equations in n unknowns, let us track all of them. We first need initial conditions 
specifying the divergence of the vector potentials as well as the other usual boundary conditions . One 
common choice (known as the Coulomb gauge) is the set of trivial conditions

∇⋅AB=0 , ∇⋅AE=0 ,  ∇⋅A 'B=0 , ∇⋅A 'E=0 , ΦB(on S )=0 , A 'B( t=0)=0 , ∂A ' B

∂ t (t=0)=0

These equations are only initial/boundary conditions. We still need to add 6 more dynamical equations 
for a unique solution. Because we are free to choose any equations, the trivial choices lead to the most 
compact final forms and are therefore the most desirable and the most traditional. The traditional 
choice of six additional equations to add is:

AE=0
AB=A 'E

Both of these expressions are vector expressions in three components, so they count as six equations. 
By adding these 6 equations (and the appropriate initial/boundary conditions) to the Maxwell 
equations, we therefore have 14 equations in 14 unknowns. With 14 equations and 14 unknowns and 
sufficient initial/boundary conditions, we therefore have a unique solution. 

Note that because the additional equations and initial conditions chosen here are so trivial, Maxwell's 
equations in potential form seems to quickly collapse to four meaningful equations in four unknowns. 
For this reason, it may be tempting to claim that there is redundancy in Maxwell's equations, because 
we are able to go from six equations in six unknowns in the field representation to four equations in 
four unknowns in the potentials representation. But the truth is that we go to 14 equations in 14 
unknowns in the potentials representation. With a clever choice of additional equations, most of these 
equations are trivial and therefore do not need to be used when solving a physics problem. But from a 
mathematical standpoint, all 14 equations are necessary for a unique solution in the potentials 
representation, and this why Maxwell's equations are not redundant.



In summary, for one particular choice of additional equations (the Coulomb gauge), Maxwell's 
equations in complete form in the potentials representation are:

  Initial conditions:
∇⋅AB=0 , ∇⋅AE=0 ,  ∇⋅A 'B=0 , ∇⋅A 'E=0 , ΦB(on S )=0 , A 'B( t=0)=0 , ∂A ' B

∂ t (t=0)=0

  System of equations:
AE=0
AB=A 'E

∇2 ΦE+
∂
∂ t

∇⋅A 'E=−
ρ
ϵ0

 

∇2 ΦB+
∂
∂ t

∇⋅A 'B=0

∇(∇⋅AE)−∇ 2 AE−
∂
∂ t

∇×A 'E=− ∂
∂ t

∇×AB+
∂
∂ t

∇ΦB+
∂2 A 'B
∂ t 2

∇(∇⋅AB)−∇2 AB−
∂
∂ t

∇×A 'B=μ0 J+ 1
c2

∂
∂ t

∇×AE−
1
c2

∂
∂ t

∇ΦE−
1
c2

∂2 A 'E
∂ t 2

Note that: B=∇×AB−∇ΦB−
∂A 'B
∂ t

and E=∇×AE−∇ΦE−
∂A 'E
∂ t

These equations can be inserted into each other in the usual away to arrive at mostly uncoupled 
equations:

  Initial conditions:
∇⋅AB=0 , ∇⋅AE=0 ,  ∇⋅A 'B=0 , ∇⋅A 'E=0 , ΦB(on S )=0 , A 'B( t=0)=0 , ∂A ' B

∂ t (t=0)=0

  System of equations:
AE=0
AB=A 'E
ΦB=0
A 'B=0

∇2 ΦE=−
ρ
ϵ0

∇2 AB−
1
c2

∂2 AB

∂ t 2 =−μ0 J+ 1
c2

∂
∂ t

∇ΦE

Note that: B=∇×AB and E=−∇ΦE−
∂AB

∂ t

It becomes obvious in this mostly-uncoupled form, that only the last two equations are useful: the 
Poisson equation for the electrostatic potential and the wave equation for the magnetic vector potential. 
But from a mathematical standpoint, there are still 14 equations in 14 unknowns present and needed in 
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order to have a unique solution. All 14 equations and all boundary conditions are needed to completely 
define the fields in terms of potentials in the most general way but still have a unique solution. If all the 
boundary conditions and trivial equations are ignored, Maxwell's equations in potential form in the 
Coulomb gauge acts like 4 equations in 4 unknowns. This is very useful to solve problems, but it does 
not imply that the Coulomb gauge is special or that the original Maxwell's equations contained 
redundancies. 


