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During World War II, the British government

cooperated with the US on the development

of the atomic bomb in the Manhattan project.

G. I. Taylor, a British fluid dynamicist, was

asked by his government to study mechanical

ways of measuring the bomb’s yield (energy

output).
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Taylor was not directly involved in the bomb’s

development, and for security reasons worked

independent of the US project.

He knew that the energy would be released

from a small volume, and would produce a very

strong shock wave that would expand in ap-

proximately a spherical shape.
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He used dimensional analysis to estimate how

the radius would scale with the other physical

variables.

From his work in fluids, Taylor assumed∗ the

relevant variables would be:

• r, the radius of the shock front.

• ρ, density of surrounding air.

• E, energy released by the device.

• t, the time at which the front reaches r.

∗Doing this correctly is the real trick.
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These physical variables have dimensions:

r ∼ [L],

ρ ∼ [ML−3],

E ∼ [ML2T−2],

t ∼ [T ].

If this is hard to see, fall back on thinking about

units.
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So assume:

r = g(ρ, E, t),

where g is some function of powers of the vari-

ables. This means that

r = CρxEytz,

where x, y, z are unknown exponents. The di-

mensions will satisfy:

L = [ML−3]x[ML2T−2]y[T ]z.
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Expand the exponents:

L = MxL−3xMyL2yT−2yTz

Now by just looking at this, extract 3 equations

for x, y, z:

1 = −3x + 2y from L’s,

0 = x + y from M’s,

0 = −2y + z from T ’s.

This is a simple system to solve. You can start

from the middle: y = −x and solve it by sub-

stitution.
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The result is

x = −1/5, y = 1/5, z = 2/5.

for the exponents, so our governing equation

is

r = Cρ−1/5E1/5t2/5,

where C is some constant that we don’t know.

We rearrange for energy, first by raising to the

fifth power:

r5 = C ′Eρ−1t2

E = C ′′r
5ρ

t2

Taylor had experimental data that indicated

that C ′′ ≈ 1.033 for air.
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In 1947 a movie of the Trinity test explosion

was released to the public. In one frame r = 100

m at a time of t = 0.016 s after the explosion.

ρ ≈ 1.1 kg/m3 at that altitude.

http://nuclearweaponarchive.org/Usa/Tests/Trinity.html

Substitute in these values:

E ≈ 4 × 1013 J.

1000 tons of TNT (a kiloton) releases about

4.2 × 1012 J. So the above value is about 10

kilotons TNT equivalent. The actual yield was

18–22 kilotons.

Even closer values can be obtained from other
frames. See

http://en.wikipedia.org/wiki/Nuclear_weapon_yield

Not bad for the back-of-the-envelope.∗

∗Maybe not exactly Taylor’s analysis, but close.
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Warnings and pitfalls

Remember mathematical functions only take

dimensionless arguments. This is shown by

power series expansions:

f(ξ) = eξ

= 1 + ξ +
1

2
ξ2 + · · ·

In this case the leading term is obviously di-

mensionless, and all terms added to it must be

also. In general a function has terms of many

different orders, which must be dimensionless

to add up.
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• Some ratios of variables and their deriva-

tives can lead to ambiguous cases. See eq.

2.23:

ωB =

√
g

θ

dθ

dz
.

This equation is dimensionally correct for

any substitution for θ.

• Derivatives and ratios are indistinguishable

to a dimensional analysis: g/z has the same

dimensions as dg/dz.

• Dimensional analysis is an aid to insight: it

cannot completely describe the physics.
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